Publication:
A review of models for water level forecasting based on machine learning

Date
2021
Authors
Wee W.J.
Zaini N.B.
Ahmed A.N.
El-Shafie A.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media Deutschland GmbH
Research Projects
Organizational Units
Journal Issue
Abstract
It is crucial to keep an eye on the water levels in reservoirs in order for them to perform at peak, as they are one of the, if not, the most vital part in water resource management. The water stored is essential in providing water supply, generating hydropower as well as preventing overlasting droughts. Thus, efficient forecasting models are essential in overcoming the issues revolving around hydropower reservoir stations. This paper reviewed the previous research on application of machine learning techniques in forecasting water level in reservoirs. In this review, the discussed machine learning techniques are ANN, ANFIS, BA, COA, SVM, etc., and their main benefits, as well as the literature, are the main focus. Initially, a general study regarding the fundamentals of the respective methods were made. Furthermore, the affecting conditions of water level forecasting, as well as the common issues faced, was also identified, in order to achieve the best results. The advantages and distadvatanges of the algorithms are extracted. In conclusion, hybrid metaheuristic algorithm produced more efficient results. This review paper covered researches conducted from the year 2000 to 2020. � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Description
forecasting method; literature review; machine learning; numerical model; reservoir; water level; water resource
Keywords
Citation
Collections