Publication:
Resorcinol-formaldehyde (RF) as a novel plasticizer for starch-based solid biopolymer electrolyte

Date
2020
Authors
Selvanathan V.
Ruslan M.H.
Aminuzzaman M.
Muhammad G.
Amin N.
Sopian K.
Akhtaruzzaman M.
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Research Projects
Organizational Units
Journal Issue
Abstract
A starch-resorcinol-formaldehyde (RF)-lithium triflate (LiTf) based biodegradable polymer electrolyte membrane was synthesized via the solution casting technique. The formation of RF crosslinks in the starch matrix was found to repress the starch's crystallinity as indicated by the XRD data. Incorporation of the RF plasticizer improved the conductivity greatly, with the highest room-temperature conductivity recorded being 4.29 � 10-4 S cm-1 achieved by the starch:LiTf:RF (20 wt.%:20 wt.%:60 wt.%) composition. The enhancement in ionic conductivity was an implication of the increase in the polymeric amorphous region concurrent with the suppression of the starch's crystallinity. Chemical complexation between the plasticizer, starch, and lithium salt components in the electrolyte was confirmed by FTIR spectra. � 2020 by the authors.
Description
Biodegradable polymers; Biopolymers; Crosslinking; Crystallinity; Formaldehyde; Fourier transform infrared spectroscopy; Lithium; Phenols; Plasticizers; Reinforced plastics; Solid electrolytes; Starch; Amorphous regions; Biopolymer electrolyte; FT-IR spectrum; Lithium triflate; Polymer electrolyte membranes; Resorcinol formaldehydes; Room-temperature conductivity; Solution-casting technique; Polyelectrolytes
Keywords
Citation
Collections