Publication: Surface Modification of Cellulose Nanocrystals (CNCs) to Form a Biocompatible, Stable, and Hydrophilic Substrate for MRI
Date
2023
Authors
Whba F.
Mohamed F.
Idris M.I.
Yahya M.S.
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
This study focused on surface modification of cellulose nanocrystals (CNCs) to create a biocompatible, stable, and hydrophilic substrate suitable for use as a coating agent to develop a dual-contrast composite material. The CNCs were prepared using acid hydrolysis. Hydrolysis was completed using 64% sulfuric acid at 45 �C for 1 h, which was combined with polyethylene glycol and sodium hydroxide (PEG/NaOH). The yield of samples exhibited prominent physicochemical properties. Zeta (?) potential analysis showed that the CNCs sample had excellent colloidal stability with a highly negative surface charge. Transmission electron microscopy (TEM) analysis confirmed that the CNCs sample had a rod-like morphology. On the other hand, field-emission scanning electron microscopy (FESEM) analysis showed that the acid hydrolysis process caused a significant reduction in particle size and changed surface morphology. In addition, cellulose nanocrystals with polyethylene glycol and sodium hydroxide (CNCs-PEG/NaOH) have many noteworthy properties such as colloidal stability, small hydrodynamic size, and water dispersibility. Furthermore, the MTT assay test on Hep G2 cells demonstrated good biocompatibility of the CNCs-PEG/NaOH and did not exhibit any cytotoxic effects. Hence, CNCs-PEG/NaOH holds the potential to serve as a dual-contrast agent for MRI techniques and other biomedical applications. � 2023 by the authors.
Description
Keywords
acid hydrolysis , cellulose nanocrystals , magnetic resonance imaging (MRI) , microcrystalline cellulose , MTT assay , particle size