Publication:
Conversion of seaweed waste to biochar for the removal of heavy metal ions from aqueous solution: A sustainable method to address eutrophication problem in water bodies

dc.citedby11
dc.contributor.authorRavindiran G.en_US
dc.contributor.authorRajamanickam S.en_US
dc.contributor.authorRamalingam M.en_US
dc.contributor.authorHayder G.en_US
dc.contributor.authorSathaiah B.K.en_US
dc.contributor.authorGaddam M.K.R.en_US
dc.contributor.authorMuniasamy S.K.en_US
dc.contributor.authorArunkumar P.en_US
dc.contributor.authorid57226345669en_US
dc.contributor.authorid57190127095en_US
dc.contributor.authorid57218113997en_US
dc.contributor.authorid56239664100en_US
dc.contributor.authorid57147186000en_US
dc.contributor.authorid58629925000en_US
dc.contributor.authorid57214630614en_US
dc.contributor.authorid57521109800en_US
dc.date.accessioned2025-03-03T07:45:06Z
dc.date.available2025-03-03T07:45:06Z
dc.date.issued2024
dc.description.abstractThe present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The current study investigated the removal of toxic metals namely chromium (Cr), nickel (Ni), and zinc (Zn) from aqueous solutions in batch and column studies using biochar produced by the marine algae Ulva reticulata. SEM/EDX, FTIR, and XRD were used to examine the adsorbents' properties and stability. The removal efficiency of toxic metals in batch operations was investigated by varying the parameters, which included pH, biochar dose, initial metal ion concentration, and contact time. Similarly, in the column study, the removal efficiency of heavy metal ions was investigated by varying bed height, flow rate, and initial metal ion concentration. Response Surface Methodology (Central Composite Design (CCD)) was used to confirm the linearity between the observed and estimated values of the adsorption quantity. The packed bed column demonstrated successful removal rates of 90.38% for Cr, 91.23% for Ni, and 89.92% for Zn heavy metals from aqueous solutions, under a controlled environment. The breakthrough analysis also shows that the Thomas and Adams-Bohart models best fit the regression values, allowing prior breakthroughs in the packed bed column to be predicted. Desorption studies were conducted to understand sorption and elution during different regeneration cycles. Adding 0.3 N sulfuric acid over 40 min resulted in the highest desorption rate of the column and adsorbent used for all three metal ions. ? 2023 Elsevier Inc.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo117551
dc.identifier.doi10.1016/j.envres.2023.117551
dc.identifier.scopus2-s2.0-85176411937
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85176411937&doi=10.1016%2fj.envres.2023.117551&partnerID=40&md5=b303c8dfad888c6984b6304936f8bd3c
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36842
dc.identifier.volume241
dc.publisherAcademic Press Inc.en_US
dc.sourceScopus
dc.sourcetitleEnvironmental Research
dc.subjectAdsorption
dc.subjectChromium
dc.subjectHydrogen-Ion Concentration
dc.subjectIons
dc.subjectKinetics
dc.subjectMetals, Heavy
dc.subjectNickel
dc.subjectSeaweed
dc.subjectWater
dc.subjectWater Pollutants, Chemical
dc.subjectZinc
dc.subjectAdsorption
dc.subjectAlgae
dc.subjectChemicals removal (water treatment)
dc.subjectDesorption
dc.subjectEfficiency
dc.subjectEutrophication
dc.subjectMetal ions
dc.subjectPacked beds
dc.subjectWastewater treatment
dc.subjectadsorbent
dc.subjectcharcoal
dc.subjectchromium
dc.subjectheavy metal
dc.subjectnickel
dc.subjectwater
dc.subjectzinc
dc.subjectcharcoal
dc.subjectchromium
dc.subjectheavy metal
dc.subjection
dc.subjectwater
dc.subjectzinc
dc.subjectAlgal biochar
dc.subjectBiochar
dc.subjectClean water and sanitation
dc.subjectClean waters
dc.subjectColumn study
dc.subjectKinetic study
dc.subjectMetal ion concentration
dc.subjectPacked bed column
dc.subjectRemoval efficiencies
dc.subjectToxic metals
dc.subjectadsorption
dc.subjectaqueous solution
dc.subjectbiochar
dc.subjectdesorption
dc.subjectheavy metal
dc.subjectpollutant removal
dc.subjectreaction kinetics
dc.subjectsanitation
dc.subjectadsorption
dc.subjectalgal bloom
dc.subjectaqueous solution
dc.subjectArticle
dc.subjectcentral composite design
dc.subjectcontact time
dc.subjectcontrolled study
dc.subjectcrystal structure
dc.subjectdesorption
dc.subjectelution
dc.subjectenergy dispersive X ray spectroscopy
dc.subjecteutrophication
dc.subjectflow rate
dc.subjectFourier transform infrared spectroscopy
dc.subjectheavy metal removal
dc.subjecthydrogen bond
dc.subjectmarine alga
dc.subjectnonhuman
dc.subjectnutrient content
dc.subjectpH
dc.subjectresponse surface method
dc.subjectsanitation
dc.subjectscanning electron microscopy
dc.subjectseaweed
dc.subjectsurface area
dc.subjectsurface property
dc.subjectwaste water management
dc.subjectwater treatment
dc.subjectX ray diffraction
dc.subjectkinetics
dc.subjectwater pollutant
dc.subjectHeavy metals
dc.titleConversion of seaweed waste to biochar for the removal of heavy metal ions from aqueous solution: A sustainable method to address eutrophication problem in water bodiesen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections