Publication: Simulation of a MEMS piezoelectric energy harvester
| dc.citedby | 3 | |
| dc.contributor.author | Md Ralib A.A. | en_US |
| dc.contributor.author | Nurashikin Nordin A. | en_US |
| dc.contributor.author | Salleh H. | en_US |
| dc.contributor.authorid | 36537608500 | en_US |
| dc.contributor.authorid | 7005958999 | en_US |
| dc.contributor.authorid | 24067645400 | en_US |
| dc.date.accessioned | 2023-12-29T07:49:23Z | |
| dc.date.available | 2023-12-29T07:49:23Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | The growing demand of portable electronic devices has created the demand of long lasting recharged source of power. Non-environmental friendly conventional batteries with limited lifetimes are no longer a feasible option. This paper proposes a piezoelectric, vibration based energy harvester. The design and simulation of a MEMS piezoelectric cantilever beam with interdigitated electrodes is described. The micro-energy harvester is formed using a silicon substrate, ZnO piezoelectric layer, Pt electrodes and nickel proof mass. Finite element simulation was conducted using CoventorWare� to obtain the device at resonance frequency, output voltage and optimum dimensions. � 2010 EDA Publishing/DTIP. | en_US |
| dc.description.nature | Final | en_US |
| dc.identifier.ArtNo | 5486470 | |
| dc.identifier.epage | 181 | |
| dc.identifier.scopus | 2-s2.0-77957855178 | |
| dc.identifier.spage | 177 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957855178&partnerID=40&md5=52c6285363c04b5b9aca850db03746fb | |
| dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/30554 | |
| dc.pagecount | 4 | |
| dc.source | Scopus | |
| dc.sourcetitle | Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2010 | |
| dc.subject | Cantilever beam | |
| dc.subject | Energy harvesting | |
| dc.subject | Interdigitated electrodes | |
| dc.subject | Piezoelectric | |
| dc.subject | Atomic force microscopy | |
| dc.subject | Cantilever beams | |
| dc.subject | Design | |
| dc.subject | Electrodes | |
| dc.subject | Harvesters | |
| dc.subject | Nanocantilevers | |
| dc.subject | Piezoelectricity | |
| dc.subject | Pile foundations | |
| dc.subject | Platinum | |
| dc.subject | Resonance | |
| dc.subject | Zinc oxide | |
| dc.subject | At resonance | |
| dc.subject | Conventional batteries | |
| dc.subject | CoventorWare | |
| dc.subject | Design and simulation | |
| dc.subject | Energy Harvester | |
| dc.subject | Environmental-friendly | |
| dc.subject | Finite element simulations | |
| dc.subject | Growing demand | |
| dc.subject | Inter-digitated electrodes | |
| dc.subject | Long lasting | |
| dc.subject | Optimum dimensions | |
| dc.subject | Output voltages | |
| dc.subject | Piezoelectric | |
| dc.subject | Piezoelectric cantilever beams | |
| dc.subject | Piezoelectric energy | |
| dc.subject | Piezoelectric layers | |
| dc.subject | Portable electronic devices | |
| dc.subject | Pt electrode | |
| dc.subject | Silicon substrates | |
| dc.subject | ZnO | |
| dc.subject | Energy harvesting | |
| dc.title | Simulation of a MEMS piezoelectric energy harvester | en_US |
| dc.type | Conference paper | en_US |
| dspace.entity.type | Publication |