Publication: Advanced 3Y-TZP bioceramic doped with Al2O3 and CeO2 potentially for biomedical implant applications
dc.citedby | 12 | |
dc.contributor.author | Golieskardi M. | en_US |
dc.contributor.author | Satgunam M. | en_US |
dc.contributor.author | Ragurajan D. | en_US |
dc.contributor.author | Hoque M.E. | en_US |
dc.contributor.author | Ng A.M.H. | en_US |
dc.contributor.author | Shanmuganantha L. | en_US |
dc.contributor.authorid | 55866907000 | en_US |
dc.contributor.authorid | 48561725600 | en_US |
dc.contributor.authorid | 56520125100 | en_US |
dc.contributor.authorid | 35834864100 | en_US |
dc.contributor.authorid | 8330324300 | en_US |
dc.contributor.authorid | 57208800726 | en_US |
dc.date.accessioned | 2023-05-29T07:24:45Z | |
dc.date.available | 2023-05-29T07:24:45Z | |
dc.date.issued | 2019 | |
dc.description | Alumina; Aluminum oxide; Bioceramics; Biocompatibility; Biomechanics; Cell culture; Cell proliferation; Cells; Cerium oxide; Cytotoxicity; Mechanical properties; Morphology; Sintering; Vickers hardness; Yttria stabilized zirconia; Yttrium oxide; Zirconia; 3Y-TZP; Biomedical implant applications; Cell morphology; Operating temperature; Osteoblast cells; Sintering temperatures; Theoretical density; Yttria-stabilized zirconia (3Y-TZP); Fracture toughness | en_US |
dc.description.abstract | This research studies 3�mol% yttria-stabilized zirconia (3Y-TZP) investigating the effects of Al2O3 and CeO2 dopants on the stability of tetragonal phase and the microstructure of 3Y-TZP determined over the operating temperature ranging from 1250�C to 1550�C. It is found that the mechanical properties of 3Y-TZP are dependent on the sintering temperature and the dopant amount. The current study reveals that the optimum sintering temperature is 1450�C for all 3Y-TZP samples while attaining more than 98% of the theoretical density (6.1g/cm3). With optimum dopants, the 3Y-TZP ceramic samples demonstrate the Vickers hardness of 10.9 GPa and fracture toughness (KIC) of 10 MPa.m1/2. Fracture toughness increases with the dopant content, indicating that the annihilation of oxygen vacancies in 3Y-TZP is responsible for the instability of the t-ZrO2 lattice. To investigate the biocompatibility of 3Y-TZP, cell culture study was performed using osteoblast cells. The results demonstrate a high percentage of cell attachment and proliferation that confirmed the biocompatibility of synthesized 3Y-TZP. � 2019, � 2019 Informa UK Limited, trading as Taylor & Francis Group. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.doi | 10.1080/10667857.2019.1578912 | |
dc.identifier.epage | 489 | |
dc.identifier.issue | 8 | |
dc.identifier.scopus | 2-s2.0-85065829326 | |
dc.identifier.spage | 480 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065829326&doi=10.1080%2f10667857.2019.1578912&partnerID=40&md5=967f15c52e2ae351be8485983df9f645 | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/24581 | |
dc.identifier.volume | 34 | |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.source | Scopus | |
dc.sourcetitle | Materials Technology | |
dc.title | Advanced 3Y-TZP bioceramic doped with Al2O3 and CeO2 potentially for biomedical implant applications | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |