Publication:
Optimization of baseline parameters and numerical simulation for Cu(In, Ga)Se2 solar cell

dc.citedby5
dc.contributor.authorZa'Abar F.en_US
dc.contributor.authorZuhdi A.W.M.en_US
dc.contributor.authorBahrudin M.S.en_US
dc.contributor.authorAbdullah S.F.en_US
dc.contributor.authorHarif M.N.en_US
dc.contributor.authorHasani A.H.en_US
dc.contributor.authorid57204593023en_US
dc.contributor.authorid56589966300en_US
dc.contributor.authorid55603412800en_US
dc.contributor.authorid14319069500en_US
dc.contributor.authorid22634024000en_US
dc.contributor.authorid57204586055en_US
dc.date.accessioned2023-05-29T06:50:49Z
dc.date.available2023-05-29T06:50:49Z
dc.date.issued2018
dc.descriptionComputer simulation; Computer software; Conversion efficiency; Electric network analysis; Electron affinity; Electronic properties; Energy gap; Heterojunctions; Numerical models; Open circuit voltage; Semiconductor doping; ATLAS software; Baseline data; CIGS solar cells; Electrical characterization; Heterojunction cells; Optical and electronic properties; Parameters optimization; Performance analysis; Solar cellsen_US
dc.description.abstractFor the purpose of designing a highly efficient Cu(In, Ga)Se2 (CIGS) solar cell, an understanding of the structural, optical and electronic properties of each constituent layers in the heterojunction cell is very crucial. Important parameters such as thickness, doping concentration, electron affinity and band gap energy are identified to govern the electrical characterization of the cell. In this paper, an extensive study on the effects of these parameters on the short circuit current density (Jsc) and open circuit voltage (Voc) known as J-V characteristics is performed. Optimized values of each parameter obtained from different numerical simulations are summarized and presented. An optimal CIGS solar cell model is later identified and simulated using Silvaco ATLAS software. Performance analysis is carried out on the completed cell under standard irradiance with air mass 1.5 (AM1.5) spectrums. This proposed model provides simulated conversion efficiency of 23.58% and fill factor (FF) of 77.89% which is in agreement with experimental efficiencies found in literature. � 2018 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo8481289
dc.identifier.doi10.1109/SMELEC.2018.8481289
dc.identifier.epage213
dc.identifier.scopus2-s2.0-85056283781
dc.identifier.spage209
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056283781&doi=10.1109%2fSMELEC.2018.8481289&partnerID=40&md5=db8881252821dee3a42325f506a06f13
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/23659
dc.identifier.volume2018-August
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceScopus
dc.sourcetitleIEEE International Conference on Semiconductor Electronics, Proceedings, ICSE
dc.titleOptimization of baseline parameters and numerical simulation for Cu(In, Ga)Se2 solar cellen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
Files
Collections