Publication:
A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications

dc.citedby2
dc.contributor.authorObeidi N.en_US
dc.contributor.authorKermadi M.en_US
dc.contributor.authorBelmadani B.en_US
dc.contributor.authorAllag A.en_US
dc.contributor.authorAchour L.en_US
dc.contributor.authorMekhilef S.en_US
dc.contributor.authorid57925308400en_US
dc.contributor.authorid57160269100en_US
dc.contributor.authorid35108711000en_US
dc.contributor.authorid16400649700en_US
dc.contributor.authorid57194679994en_US
dc.contributor.authorid57928298500en_US
dc.date.accessioned2023-05-29T09:36:20Z
dc.date.available2023-05-29T09:36:20Z
dc.date.issued2022
dc.descriptionBoost converter; Controllers; Digital control systems; Electric current regulators; Functions; MATLAB; Maximum power point trackers; Pulse width modulation; Sensorless control; Voltage control; Buck/boost converters; Current sensorless; Current sensorless control; Digital control; Maximum Power Point Tracking; Photovoltaic applications; Photovoltaic systems; Pulsewidth modulations (PWM); STATEFLOW; Buck-Boost converteren_US
dc.description.abstractIn the present paper, a current sensorless (CSL) method for buck-boost converter control is proposed for maximum power point tracking (MPPT) photovoltaic applications. The proposed control scheme uses the mathematical model of the buck-boost converter to derive a predefined objective function for the MPPT control. The proposed scheme does not require any current sensor and relies only on the input voltage signal, which decreases the implementation cost. The proposed method is successfully implemented using a Matlab/Simulink/Stateflow environment, and its effectiveness is compared over the perturb and observe (P&O) method. An experimental rig, that includes a buck-boost converter, a PV simulator, and a resistive load, is used for the experimental validation. A rapid Arduino prototyping platform is used for the digital implementation, where the SAM3X8E microcontroller of the Arduino DUE board, which integrates an ARM Cortex-M3 MCU, is used as a target hardware for the proposed model-based controller developed under the Stateflow environment. Furthermore, the integrated pulse width modulation (PWM) macrocell is used to generate accurate PWM gate-drive signals for the buck-boost converter. Compared to the P&O, the presented simulation and experimental results show that the proposed method has reduced the computation burden and the sensor cost of implementation by 24.3%, and 27.95%, respectively. � 2022 by the authors.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo7811
dc.identifier.doi10.3390/en15207811
dc.identifier.issue20
dc.identifier.scopus2-s2.0-85140578576
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85140578576&doi=10.3390%2fen15207811&partnerID=40&md5=b404000e313e3ba3a2f3b094cd0c8e63
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/26721
dc.identifier.volume15
dc.publisherMDPIen_US
dc.relation.ispartofAll Open Access, Gold
dc.sourceScopus
dc.sourcetitleEnergies
dc.titleA Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections