Publication:
A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications

No Thumbnail Available
Date
2022
Authors
Obeidi N.
Kermadi M.
Belmadani B.
Allag A.
Achour L.
Mekhilef S.
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Research Projects
Organizational Units
Journal Issue
Abstract
In the present paper, a current sensorless (CSL) method for buck-boost converter control is proposed for maximum power point tracking (MPPT) photovoltaic applications. The proposed control scheme uses the mathematical model of the buck-boost converter to derive a predefined objective function for the MPPT control. The proposed scheme does not require any current sensor and relies only on the input voltage signal, which decreases the implementation cost. The proposed method is successfully implemented using a Matlab/Simulink/Stateflow environment, and its effectiveness is compared over the perturb and observe (P&O) method. An experimental rig, that includes a buck-boost converter, a PV simulator, and a resistive load, is used for the experimental validation. A rapid Arduino prototyping platform is used for the digital implementation, where the SAM3X8E microcontroller of the Arduino DUE board, which integrates an ARM Cortex-M3 MCU, is used as a target hardware for the proposed model-based controller developed under the Stateflow environment. Furthermore, the integrated pulse width modulation (PWM) macrocell is used to generate accurate PWM gate-drive signals for the buck-boost converter. Compared to the P&O, the presented simulation and experimental results show that the proposed method has reduced the computation burden and the sensor cost of implementation by 24.3%, and 27.95%, respectively. � 2022 by the authors.
Description
Boost converter; Controllers; Digital control systems; Electric current regulators; Functions; MATLAB; Maximum power point trackers; Pulse width modulation; Sensorless control; Voltage control; Buck/boost converters; Current sensorless; Current sensorless control; Digital control; Maximum Power Point Tracking; Photovoltaic applications; Photovoltaic systems; Pulsewidth modulations (PWM); STATEFLOW; Buck-Boost converter
Keywords
Citation
Collections