Publication:
Investigation of BaTiO3 and TiO2 Based Nano-fillers on the Space Charge and Electrical Strength of Cross-linked Polyethylene (XLPE)

Date
2021
Authors
Rahman A.B.A.
Rahman M.S.A.
Ariffin A.M.
Ali N.H.N.
Ghani A.B.A.
Lau K.Y.
Mohamad M.S.
Osman M.
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Research Projects
Organizational Units
Journal Issue
Abstract
Titanium element has been used in different applications such as aerospace and electronics. However, the potential benefits of this element in the electrical application are yet to be explored. Thus, this paper is interested to study the potential of Titanium for insulating materials in terms of dielectric strength enhancement. As Titanium is a non-magnetic and a poor conductor of electricity, it may produce improvement to the characteristic of nanocomposite polymers. Hence, this work explores the effect of Barium Titanate (BaTiO3) and Titanium Oxide (TiO2) on the dielectric strength of Cross-linked Polyethylene (XLPE). These methods have been used to prepare nanocomposite samples into thin layers of 1mm. The samples are tested under AC to test the breakdown performance of unfilled and nano-filled XLPE according to ASTM D149 standard. The space charge formation has also been measured across the samples in order to investigate charge formation inside the samples. The results observed positive results in terms of space charge formation and breakdown strength. However, the optimum amount of nano-fillers need to be carefully determined in order to produce improvement. A comparison based on BaTiO3 and TiO2 has shown different behaviours on both characteristics. The study has shown a promising effect of the nanoparticles in XLPE nanocomposite. � 2021 IEEE.
Description
Aliphatic compounds; Barium titanate; Electric space charge; Fillers; High-k dielectric; Nanocomposites; Oxide minerals; Polyethylenes; Titanium dioxide; Breakdown performance; Breakdown strengths; Crosslinked polyethylene; Dielectric strengths; Electrical applications; Nanocomposite polymers; Nanocomposite samples; Space charge formations; Dielectric materials
Keywords
Citation
Collections