Publication:
Laminar forced convection flow over a backward facing step using nanofluids

dc.citedby114
dc.contributor.authorAl-aswadi A.A.en_US
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorCampo A.en_US
dc.contributor.authorid36241331700en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid23157654000en_US
dc.date.accessioned2023-12-29T07:50:48Z
dc.date.available2023-12-29T07:50:48Z
dc.date.issued2010
dc.description.abstractLaminar forced convection flow of nanofluids over a 2D horizontal backward facing step placed in a duct is numerically investigated using a finite volume method. A 5% volume fraction of nanoparticles is dispersed in a base fluid besides using various types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2. The duct has a step height of 4.8mm, and an expansion ratio of 2. The Reynolds number was in the range of 50?Re?175. A primary recirculation region has been developed after the sudden expansion and it starts to change to become fully developed flow downstream of the reattachment point. The reattachment point is found to move downstream far from the step as Reynolds number increases. Nanofluid of SiO2 nanoparticles is observed to have the highest velocity among other nanofluids types, while nanofluid of Au nanoparticles has the lowest velocity. The static pressure and wall shear stress increase with Reynolds number and vice versa for skin friction coefficient. � 2010 Elsevier Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2010.06.007
dc.identifier.epage957
dc.identifier.issue8
dc.identifier.scopus2-s2.0-77956063986
dc.identifier.spage950
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77956063986&doi=10.1016%2fj.icheatmasstransfer.2010.06.007&partnerID=40&md5=46df4cd4c6511c3854512a63c60e2011
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30647
dc.identifier.volume37
dc.pagecount7
dc.sourceScopus
dc.sourcetitleInternational Communications in Heat and Mass Transfer
dc.subjectBackward facing step
dc.subjectForced convection
dc.subjectHeat transfer enhancement
dc.subjectNanofluids
dc.subjectRecirculation flow
dc.subjectFacings
dc.subjectForced convection
dc.subjectFriction
dc.subjectGold
dc.subjectHeat transfer coefficients
dc.subjectNanoparticles
dc.subjectReynolds number
dc.subjectSilicon compounds
dc.subjectSilver
dc.subjectAu nanoparticle
dc.subjectBackward facing step
dc.subjectExpansion ratio
dc.subjectFlow downstream
dc.subjectHeat transfer enhancement
dc.subjectLaminar forced convections
dc.subjectNano-fluid
dc.subjectNanofluids
dc.subjectRe-circulation flow
dc.subjectRecirculation regions
dc.subjectSkin friction coefficient
dc.subjectStatic pressure
dc.subjectStep height
dc.subjectSudden expansion
dc.subjectTiO
dc.subjectWall shear stress
dc.subjectNanofluidics
dc.titleLaminar forced convection flow over a backward facing step using nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections