Publication:
Cooling effectiveness enhancement of parallel air-cooled battery system through integration with multi-phase change materials

dc.citedby7
dc.contributor.authorMohammed A.G.en_US
dc.contributor.authorHasini H.en_US
dc.contributor.authorElfeky K.E.en_US
dc.contributor.authorWang Q.en_US
dc.contributor.authorHajara M.A.en_US
dc.contributor.authorOm N.I.en_US
dc.contributor.authorid57219281767en_US
dc.contributor.authorid6507435998en_US
dc.contributor.authorid56979298200en_US
dc.contributor.authorid55521034600en_US
dc.contributor.authorid58961819400en_US
dc.contributor.authorid42162023000en_US
dc.date.accessioned2025-03-03T07:43:03Z
dc.date.available2025-03-03T07:43:03Z
dc.date.issued2024
dc.description.abstractThis work presents a numerical investigation of the integration of conventional parallel air-cooling battery system with multi-phase change materials (PCMs) to improve the cooling effectiveness at low power consumption (Pc) rate. The study considers various cells partitioning of the PCMs on nine different parallel air-cooled battery packs. The impact of PCMs pattern schemes, inclination angle of the manifold, and air inlet velocity are analysed by employing finite volume technique coupled with an enthalpy-porosity method. Compared with a typical parallel air-cooling system, despite 90% reduction in the air inlet velocity, the integrated system successfully lowers the maximum temperature (Tmax) by 12.0 K and improves uniformity of temperature distribution based on standard deviation (SDV) of temperature field by 43.9%. Subsequently, inclining the air inlet manifold to an angle close to vertical leads to a poor cooling performance. Also, a proper pattern of PCMs cells partitioning having a trapezoidal cell shape at the top and bottom, and a parallelogram cell shape at the midsection exhibits a better heat dissipation performance. Moreover, compared to the module with highest inlet velocity of 1.5 m/s, reducing the inlet velocity by 66.7% still controls Tmax at 313.13 K which is well below the critical limit, and decreases the Pc by 65.8%. ? 2024 Elsevier Masson SASen_US
dc.description.natureFinalen_US
dc.identifier.ArtNo109030
dc.identifier.doi10.1016/j.ijthermalsci.2024.109030
dc.identifier.scopus2-s2.0-85189022508
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85189022508&doi=10.1016%2fj.ijthermalsci.2024.109030&partnerID=40&md5=dcfbf0237690ddbb625b298560c222a0
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36555
dc.identifier.volume201
dc.publisherElsevier Masson s.r.l.en_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Thermal Sciences
dc.subjectAir
dc.subjectAir intakes
dc.subjectBattery Pack
dc.subjectCooling
dc.subjectCooling systems
dc.subjectInlet flow
dc.subjectPhase change materials
dc.subjectThermal management (electronics)
dc.subjectAir cooling
dc.subjectBattery systems
dc.subjectCell partitioning
dc.subjectCell shapes
dc.subjectCooling effectiveness
dc.subjectInlet velocity
dc.subjectLow-power consumption
dc.subjectMulti phase change material
dc.subjectNumerical investigations
dc.subjectParallel air cooling
dc.subjectLithium-ion batteries
dc.titleCooling effectiveness enhancement of parallel air-cooled battery system through integration with multi-phase change materialsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections