Publication:
Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology

dc.citedby11
dc.contributor.authorJa'e I.A.en_US
dc.contributor.authorSalih A.R.en_US
dc.contributor.authorSyamsir A.en_US
dc.contributor.authorMin T.H.en_US
dc.contributor.authorItam Z.en_US
dc.contributor.authorAmaechi C.V.en_US
dc.contributor.authorAnggraini V.en_US
dc.contributor.authorSridhar J.en_US
dc.contributor.authorid57201461345en_US
dc.contributor.authorid58723465400en_US
dc.contributor.authorid57195320482en_US
dc.contributor.authorid57195494758en_US
dc.contributor.authorid55102723400en_US
dc.contributor.authorid57204818354en_US
dc.contributor.authorid35072537800en_US
dc.contributor.authorid57212731422en_US
dc.date.accessioned2024-10-14T03:17:28Z
dc.date.available2024-10-14T03:17:28Z
dc.date.issued2023
dc.description.abstractFibre-reinforced concrete (FRC) is an emerging construction material. However, improving its mechanical properties using sustainable materials remains a concern. In this paper, a combination of experimental and numerical techniques is applied to investigate the combined influence of kenaf (K) and polypropylene fibre (PPF) on the mechanical properties of KPPFRC. The optimal design component of Response Surface Methodology was utilised with combined fibre content between 0.5% and 2%. The results show a general increase in the mechanical properties with KF being the main contributing factor, and corresponding decreases in all responses with the increase in PPF. Nonetheless, the predicted optimal volume fraction of 1.5% consisting of 1.0 kg kF and 0.51 kg PPF gives a 100%, 174% and 100% rise in compressive, split tensile, and flexural strength respectively compared to the control sample. Hence, these optimal proportions of KF and PPF can be utilised as an eco-friendly sustainable material in concrete. � 2023 The Authorsen_US
dc.description.natureFinalen_US
dc.identifier.ArtNo100262
dc.identifier.doi10.1016/j.dibe.2023.100262
dc.identifier.scopus2-s2.0-85177843202
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85177843202&doi=10.1016%2fj.dibe.2023.100262&partnerID=40&md5=298ded2941f7e22e0730afa59ebb008b
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33937
dc.identifier.volume16
dc.publisherElsevier Ltden_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofGold Open Access
dc.sourceScopus
dc.sourcetitleDevelopments in the Built Environment
dc.subjectEnergy
dc.subjectFibre-reinforced concrete
dc.subjectKenaf and polypropylene fibre
dc.subjectPredicted mechanical properties
dc.subjectResponse surface analysis
dc.subjectFiber reinforced materials
dc.subjectHemp
dc.subjectReinforced concrete
dc.subjectSurface analysis
dc.subjectEnergy
dc.subjectExperimental techniques
dc.subjectFiber-reinforced concretes
dc.subjectKenaf and polypropylene fiber
dc.subjectNumerical techniques
dc.subjectPolypropylene fiber reinforced concrete
dc.subjectPredicted mechanical property
dc.subjectResponse surface analysis
dc.subjectResponse-surface methodology
dc.subjectSustainable materials
dc.subjectPolypropylenes
dc.titleExperimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodologyen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections