Publication:
Multi-objectives optimization on microwave-assisted-biological-based biogas upgrading and bio-succinic acid production

dc.citedby0
dc.contributor.authorAdnan A.I.en_US
dc.contributor.authorOng M.Y.en_US
dc.contributor.authorMohamed H.en_US
dc.contributor.authorChia S.R.en_US
dc.contributor.authorMilano J.en_US
dc.contributor.authorNomanbhay S.en_US
dc.contributor.authorid57211786411en_US
dc.contributor.authorid57191970824en_US
dc.contributor.authorid57136356100en_US
dc.contributor.authorid57194081866en_US
dc.contributor.authorid57052617200en_US
dc.contributor.authorid57217211137en_US
dc.date.accessioned2025-03-03T07:42:16Z
dc.date.available2025-03-03T07:42:16Z
dc.date.issued2024
dc.description.abstractThis study represents the first investigation of bio-succinic acid (bio-SA) production with methane enrichment using carbon-dioxide-fixating bacteria in the co-culture of ragi tapai and macroalgae, Chaetomorpha. Microwave irradiation has also been introduced to enhance the biochemical processes as it could provide rapid and selective heating of substrates. In this research, microwave irradiation was applied on ragi tapai as a pre-treatment process. Factors such as microwave irradiation dose on ragi tapai, Chaetomorpha ratio in the co-culture, and pH value were studied. Optimal conditions were identified using Design-Expert software, resulting in optimal experimental biomethane and bio-SA production of 85.7 % and 0.65 g/L, respectively, at a microwave dose of 1.45 W/g, Chaetomorpha ratio of 0.9 and pH value of 7.8. The study provides valuable insights into microwave control for promoting simultaneous methane enrichment and bio-SA production, potentially reducing costs associated with CO2 capture and storage and biogas upgrading. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo131028
dc.identifier.doi10.1016/j.biortech.2024.131028
dc.identifier.scopus2-s2.0-85197340931
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85197340931&doi=10.1016%2fj.biortech.2024.131028&partnerID=40&md5=8034b8198c7ffcc70e73ae2b4fca324e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36405
dc.identifier.volume406
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleBioresource Technology
dc.subjectBiogas
dc.subjectCarbon dioxide
dc.subjectIrradiation
dc.subjectMethane
dc.subjectpH
dc.subjectbiogas
dc.subjectcarbon dioxide
dc.subjectsuccinic acid
dc.subjectAcid production
dc.subjectBiogas upgrading
dc.subjectCarbon capture and utilization
dc.subjectChaetomorpha
dc.subjectCo-cultures
dc.subjectMethane enrichments
dc.subjectMicrowave- irradiations
dc.subjectRagi tapai
dc.subjectSuccinic acids
dc.subjectSustainable succinic acid synthesis
dc.subjectbacterium
dc.subjectbiofuel
dc.subjectbiogas
dc.subjectcarbon sequestration
dc.subjectcarboxylic acid
dc.subjectexperimental study
dc.subjectfood product
dc.subjectheating
dc.subjectirradiation
dc.subjectmacroalga
dc.subjectmethane
dc.subjectArticle
dc.subjectbiomass production
dc.subjectcarbon capture
dc.subjectChaetomorpha
dc.subjectcontrolled study
dc.subjectdegree of freedom
dc.subjectfinger millet
dc.subjectmacroalga
dc.subjectmicrowave irradiation
dc.subjectnonhuman
dc.subjectpH
dc.subjectprocess optimization
dc.subjectresponse surface method
dc.subjecttemperature
dc.subjectMicrowave irradiation
dc.titleMulti-objectives optimization on microwave-assisted-biological-based biogas upgrading and bio-succinic acid productionen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections