Publication:
Design and modelling of eco-friendly CH3NH3SnI3-based perovskite solar cells with suitable transport layers

dc.citedby16
dc.contributor.authorMottakin M.en_US
dc.contributor.authorSobayel K.en_US
dc.contributor.authorSarkar D.en_US
dc.contributor.authorAlkhammash H.en_US
dc.contributor.authorAlharthi S.en_US
dc.contributor.authorTechato K.en_US
dc.contributor.authorShahiduzzaman M.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorSopian K.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorid57195305487en_US
dc.contributor.authorid57194049079en_US
dc.contributor.authorid57220704093en_US
dc.contributor.authorid56711980800en_US
dc.contributor.authorid56095200200en_US
dc.contributor.authorid25321184300en_US
dc.contributor.authorid55640096500en_US
dc.contributor.authorid7102424614en_US
dc.contributor.authorid7003375391en_US
dc.contributor.authorid57195441001en_US
dc.date.accessioned2023-05-29T09:05:34Z
dc.date.available2023-05-29T09:05:34Z
dc.date.issued2021
dc.descriptionCopper oxides; Defects; Efficiency; Electron transport properties; Hole mobility; Lead compounds; Perovskite solar cells; Tin compounds; Tungsten compounds; Absorber layers; Amphoteric defects; Defect tolerance; Design and modeling; Eco-friendly; Hole transport materials; Maximum Efficiency; SCAPS-1D; Tolerance limits; Transport layers; Perovskiteen_US
dc.description.abstractAn ideal n-i-p perovskite solar cell employing a Pb free CH3NH3SnI3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH3NH3SnI3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in Voc, PCE decreases with temperature. Defect tolerance limit for IL1 is 1013 cm?3, 1016 cm?3 and 1012 cm?3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 1014 cm?3. With the proposed device structure FTO/PCBM/CH3NH3SnI3/CuO shows the maximum efficiency of 25.45% (Voc = 0.97 V, Jsc = 35.19 mA/cm2, FF = 74.38%), for the structure FTO/TiO2/CH3NH3SnI3/CuO the best PCE is obtained 26.92% (Voc = 0.99 V, Jsc = 36.81 mA/cm2, FF = 73.80%) and device structure of FTO/WO3/CH3NH3SnI3/CuO gives the maximum efficiency 24.57% (Voc = 0.90 V, Jsc = 36.73 mA/cm2, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO2/CH3NH3SnI3/CuO system provides better performance and better defect tolerance capacity. � 2021 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo7200
dc.identifier.doi10.3390/en14217200
dc.identifier.issue21
dc.identifier.scopus2-s2.0-85118551427
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118551427&doi=10.3390%2fen14217200&partnerID=40&md5=cc8db62d67bad5a6cfcd81893e93942c
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/25924
dc.identifier.volume14
dc.publisherMDPIen_US
dc.relation.ispartofAll Open Access, Gold
dc.sourceScopus
dc.sourcetitleEnergies
dc.titleDesign and modelling of eco-friendly CH3NH3SnI3-based perovskite solar cells with suitable transport layersen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections