Publication:
Process optimization of rice husk ash supported catalyst in biodiesel synthesis using response surface methodology approach

dc.citedby11
dc.contributor.authorSulaiman N.F.en_US
dc.contributor.authorLeong Y.W.en_US
dc.contributor.authorLee S.L.en_US
dc.contributor.authorGoh Z.W.en_US
dc.contributor.authorYahya S.S.M.en_US
dc.contributor.authorSofiah A.G.N.en_US
dc.contributor.authorid57215633057en_US
dc.contributor.authorid58510406700en_US
dc.contributor.authorid57193482292en_US
dc.contributor.authorid58675662500en_US
dc.contributor.authorid58675662600en_US
dc.contributor.authorid57197805797en_US
dc.date.accessioned2025-03-03T07:44:38Z
dc.date.available2025-03-03T07:44:38Z
dc.date.issued2024
dc.description.abstractBiodiesel is sustainable and biodegradable energy that is synthesized from renewable material consisting of a high capability to replace energy from fossil fuels. This research focused on biodiesel synthesis from waste cooking oil utilizing rice husk ash (RHA) supported catalysts. A series of alkaline earth metal oxide, calcium oxide, and strontium oxide supported on RHA catalyst; CaO/RHA and SrO/RHA catalysts were synthesized via wetness impregnation method with varied calcination temperatures and ratios. It was found that the 10SrO/90RHA (900 �C) catalyst produced maximum biodiesel yield (89.97%) over the transesterification process from waste cooking oil, while the catalytic activity of 10CaO/90RHA (800 �C) catalyst demonstrated the 83.09% of biodiesel yield. Further analysis on optimization of parameters for transesterification reaction using 10SrO/90RHA (10:90) catalyst revealed that higher biodiesel produced at a reaction temperature of 65 �C, catalytic loading of 6 wt%, oil-to-methanol of 1:18 mol ratio and reaction time of 1 h. The optimization for the 10SrO/90RHA (900 �C) catalyzed reaction was then verified using response surface methodology (RSM) throughout Box-Behnken design (BBD). The characteristics of the produced biodiesel, under optimal process conditions, comply with the standards set by ASTM D6751 and EN 14214 for fuel quality. ? 2023 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo130165
dc.identifier.doi10.1016/j.fuel.2023.130165
dc.identifier.scopus2-s2.0-85175426633
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175426633&doi=10.1016%2fj.fuel.2023.130165&partnerID=40&md5=4dcc8d84f57d2250bfc214b28ddaf773
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36782
dc.identifier.volume358
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleFuel
dc.subjectCatalyst activity
dc.subjectCatalyst supports
dc.subjectFossil fuels
dc.subjectLime
dc.subjectOils and fats
dc.subjectOptimization
dc.subjectStrontium
dc.subjectStrontium compounds
dc.subjectSurface properties
dc.subjectSynthetic fuels
dc.subjectTransesterification
dc.subjectAlkaline earth metal oxides
dc.subjectBiodiesel synthesis
dc.subjectClean energy
dc.subjectEnergy
dc.subjectProcess optimisation
dc.subjectResponse-surface methodology
dc.subjectRice-husk ash
dc.subjectSynthesised
dc.subjectWaste cooking oil
dc.subject]+ catalyst
dc.subjectBiodiesel
dc.titleProcess optimization of rice husk ash supported catalyst in biodiesel synthesis using response surface methodology approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections