Publication:
First Principles Enhanced Electronic Band Structure of Back Contact in CdTe Solar Cells using DFT+U Method

dc.citedby0
dc.contributor.authorAhmad N.I.en_US
dc.contributor.authorAzizan N.en_US
dc.contributor.authorKar Y.B.en_US
dc.contributor.authorDoroody C.en_US
dc.contributor.authorArshad S.N.M.en_US
dc.contributor.authorAbdullah A.Z.en_US
dc.contributor.authorJamal A.en_US
dc.contributor.authorid57200991933en_US
dc.contributor.authorid57189593226en_US
dc.contributor.authorid58072938600en_US
dc.contributor.authorid56905467200en_US
dc.contributor.authorid56177750400en_US
dc.contributor.authorid56878313200en_US
dc.contributor.authorid56957878800en_US
dc.date.accessioned2024-10-14T03:19:20Z
dc.date.available2024-10-14T03:19:20Z
dc.date.issued2023
dc.description.abstractCadmium telluride (CdTe) superstrate solar cells have captivated the industry with their remarkable cost-effectiveness. However, optimizing the composition and optoelectrical properties of optimal back surface field (BSF) which can act as a lattice matching interface between the back contact and absorber layer remains a key challenge due to the work function disparity of p-CdTe with metal contacts. In this study, the influence of the Hubbard U parameter on the calculated electronic properties of ZnTe as an optimal BSF compound is presented using the density functional theory (DFT) technique. The Hubbard U value progressively increased from 1 to 4.2 to analyze its influence on the band diagram and Total Density of States (TDOS) in a full comparison of DFT and DFT+U approaches. As the value of Hubbard U increased, the band gap energy exhibited a corresponding increase from 1.20 eV to 2.24 eV, respectively. In comparison, the DFT+U approach with a value of 4.2 exhibited superior accuracy in predicting the band gap of ZnTe, yielding a value of 2.24 eV that closely approximated experimental measurements. This finding reinforces the relevance of employing Hubbard U to achieve more accurate and reliable band gap values for any material doping. � 2023 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1109/IWAIIP58158.2023.10462789
dc.identifier.epage384
dc.identifier.scopus2-s2.0-85189933149
dc.identifier.spage380
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85189933149&doi=10.1109%2fIWAIIP58158.2023.10462789&partnerID=40&md5=738715ed953ae17f7538eec28ea6f2d4
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34369
dc.pagecount4
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceScopus
dc.sourcetitleIWAIIP 2023 - Conference Proceeding: International Workshop on Artificial Intelligence and Image Processing
dc.subjectCdTe solar cell
dc.subjectDensity Functional Theory
dc.subjectEnergy
dc.subjectEnergy Band
dc.subjectHubbard U parameter
dc.subjectTotal Density of States
dc.subjectCadmium telluride
dc.subjectCost effectiveness
dc.subjectElectronic properties
dc.subjectEnergy gap
dc.subjectII-VI semiconductors
dc.subjectZinc compounds
dc.subjectBack contact
dc.subjectBacksurface field
dc.subjectCadmium telluride solar cells
dc.subjectDensity-functional-theory
dc.subjectEnergy
dc.subjectEnergy band
dc.subjectHubbard
dc.subjectHubbard U parameter
dc.subjectTotal density of state
dc.subjectDensity functional theory
dc.titleFirst Principles Enhanced Electronic Band Structure of Back Contact in CdTe Solar Cells using DFT+U Methoden_US
dc.typeConference Paperen_US
dspace.entity.typePublication
Files
Collections