Publication:
Improved performance of lead-free Perovskite solar cell incorporated with TiO 2 ETL and CuI HTL using SCAPs

Date
2023
Authors
Noorasid N.S.
Arith F.
Mustafa A.N.
Chelvanathan P.
Hossain M.I.
Azam M.A.
Amin N.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media Deutschland GmbH
Research Projects
Organizational Units
Journal Issue
Abstract
Perovskite Solar Cells (PSC) are the fastest-growing generation of solar cells due to their high-power conversion efficiency (PCE) in a short period of time, simple synthesis process, high open-circuit voltage, and low cost. However, perovskite stability and the use of the toxic heavy metal of lead (Pb) are two significant challenges that still haunt the development of perovskite-based solar cells. This paper focuses on distinguishing and optimizing several key layers in the PSC structure
Electron Transport Layer (ETL), the absorber layer, and Hole Transport Layer (HTL) by conducting studies on the influence of various parameters towards the solar cell performance using SCAPs software device simulation. Moreover, distinct types of metal back contact also have been studied. In this simulation, it is found that each layer affects the performance of PSC and proves that the optimization of each layer effectively improves the performance of the PSC. Remarkable results of the optimized structure have achieved impressive PSC performance with JSC (29.516 mA / cm2), VOC (1.3088 V), FF (73.26), and PCE (28.30%) by the parametric analysis. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
Description
Keywords
Electron transport layer , Hole transport layer , Perovskite solar cell , SCAPs , Computer software , Conversion efficiency , Copper compounds , Electron transport properties , Heavy metals , Hole mobility , Lead compounds , Open circuit voltage , Perovskite , Titanium dioxide , Cell-be , Cell/B.E , Electron transport layers , Hole transport layers , Lead-free perovskites , Performance , Power conversion efficiencies , SCAP , Solar cell performance , TiO 2 , Perovskite solar cells
Citation
Collections