Publication:
Heat transfer in rectangular microchannels heat sink using nanofluids

dc.citedby138
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorGunnasegaran P.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid35778031300en_US
dc.contributor.authorid13907934500en_US
dc.date.accessioned2023-12-29T07:50:20Z
dc.date.available2023-12-29T07:50:20Z
dc.date.issued2010
dc.description.abstractThe effect of using nanofluids on heat transfer and fluid flow characteristics in rectangular shaped microchannel heat sink (MCHS) is numerically investigated for Reynolds number range of 100-1000. In this study, the MCHS performance using alumina-water (Al2O3-H2O) nanofluid with volume fraction ranged from 1% to 5% was used as a coolant is examined. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The MCHS performance is evaluated in terms of temperature profile, heat transfer coefficient, pressure drop, friction factor, wall shear stress and thermal resistance. The results reveal that when the volume fraction of nanoparticles is increased under the extreme heat flux, both the heat transfer coefficient and wall shear stress are increased while the thermal resistance of the MCHS is decreased. However, nanofluid with volume fraction of 5% could not be able to enhance the heat transfer or performing almost the same result as pure water. Therefore, the presence of nanoparticles could enhance the cooling of MCHS under the extreme heat flux conditions with the optimum value of nanoparticles. Only a slight increase in the pressure drop across the MCHS is found compared with the pure water-cooled MCHS. � 2010 Elsevier Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2010.08.020
dc.identifier.epage1503
dc.identifier.issue10
dc.identifier.scopus2-s2.0-78649635511
dc.identifier.spage1496
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78649635511&doi=10.1016%2fj.icheatmasstransfer.2010.08.020&partnerID=40&md5=73103641bbba2b37f1f8557dd0a0910e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30616
dc.identifier.volume37
dc.pagecount7
dc.sourceScopus
dc.sourcetitleInternational Communications in Heat and Mass Transfer
dc.subjectHeat transfer enhancement
dc.subjectNanofluids
dc.subjectRectangular microchannel heat sink (MCHS)
dc.subjectThermal resistance
dc.subjectHeat flux
dc.subjectHeat resistance
dc.subjectHeat sinks
dc.subjectHeat transfer coefficients
dc.subjectLaminar flow
dc.subjectMicrochannels
dc.subjectNanoparticles
dc.subjectPressure drop
dc.subjectReynolds number
dc.subjectShear stress
dc.subjectStrength of materials
dc.subjectTitration
dc.subjectVolume fraction
dc.subjectFlow and heat transfer
dc.subjectFlux conditions
dc.subjectFriction factors
dc.subjectGoverning equations
dc.subjectHeat transfer and fluid flow
dc.subjectHeat Transfer enhancement
dc.subjectMicro channel heat sinks
dc.subjectNano-fluid
dc.subjectNanofluids
dc.subjectOptimum value
dc.subjectPure water
dc.subjectRectangular microchannels
dc.subjectTemperature profiles
dc.subjectThermal resistance
dc.subjectWall shear stress
dc.subjectNanofluidics
dc.titleHeat transfer in rectangular microchannels heat sink using nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections