Publication:
Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms

Date
2022
Authors
Rathakrishnan V.
Bt. Beddu S.
Ahmed A.N.
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Research
Research Projects
Organizational Units
Journal Issue
Abstract
Predicting the compressive strength of concrete is a complicated process due to the heterogeneous mixture of concrete and high variable materials. Researchers have predicted the compressive strength of concrete for various mixes using machine learning and deep learning models. In this research, compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement is predicted using boosting machine learning (BML) algorithms, namely, Light Gradient Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor (GBR), Adaboost Regressor, and Extreme Gradient Boosting. In these studies, the BML model�s performance is evaluated based on prediction accuracy and prediction error rates, i.e., R2, MSE, RMSE, MAE, RMSLE, and MAPE. Additionally, the BML models were further optimised with Random Search algorithms and compared to BML models with default hyperparameters. Comparing all 5 BML models, the GBR model shows the highest prediction accuracy with R2 of 0.96 and lowest model error with MAE and RMSE of 2.73 and 3.40, respectively for test dataset. In conclusion, the GBR model are the best performing BML for predicting the compressive strength of concrete with the highest prediction accuracy, and lowest modelling error. � 2022, The Author(s).
Description
algorithm; article; compressive strength; furnace; machine learning; prediction error; slag
Keywords
Citation
Collections