Publication:
The effects of calcium-to-phosphorus ratio on the densification and mechanical properties of hydroxyapatite ceramic

Date
2015
Authors
Tan C.Y.
Singh R.
Teh Y.C.
Tan Y.M.
Yap B.K.
Journal Title
Journal ISSN
Volume Title
Publisher
Blackwell Publishing Ltd
Research Projects
Organizational Units
Journal Issue
Abstract
In this work, hydroxyapatite (HA) powders were synthesized using calcium hydroxide Ca(OH)2 and orthophosphoric acid H3PO4 via wet chemical precipitation method in aqueous medium. Calcium-to-phosphorus (Ca/P) ratio was set to 1.57, 1.67, 1.87 that yield calcium-deficient HA, stoichiometric HA, and calcium-rich HA, respectively. These synthesized HA powders (having different Ca/P ratio) were characterized in terms of particle size and microstructural examination. Then, the densification and mechanical properties of the calcium-deficient HA, stoichiometric HA, and calcium-rich HA were evaluated from 1000 to 1350�C. Experimental results have shown that no decomposition of hydroxyapatite phase was observed for stoichiometric HA (Ca/P = 1.67) and calcium-deficient HA (Ca/P = 1.57) despite sintered at high temperature of 1300�C. However, calcium oxide (CaO) was detected for calcium-rich HA (Ca/P = 1.87) when samples sintered at the same temperature. The study revealed that the highest mechanical properties were found in stoichiometric HA samples sintered at 1100-1150�C, having relative density of ?99.8%, Young's modulus of ?120 GPa, Vickers hardness of ?7.23 GPa, and fracture toughness of ?1.22 MPam1/2. � 2014 The American Ceramic Society.
Description
Density (specific gravity); Elastic moduli; Fracture; Fracture toughness; Hydroxyapatite; Mechanical properties; Orthophosphoric acid; Particle size; Phosphorus; Powders; Precipitation (chemical); Sintering; Toughness; Vickers hardness; Calcium deficients; High temperature; Hydroxyapatite ceramics; Microstructural examination; NO decomposition; Relative density; Wet-chemical precipitation; Young's Modulus; Calcium
Keywords
Citation
Collections