Publication:
Defect-rich UiO-66@g-C3N4/Ni frameworks as efficient water splitting photocatalysts

dc.citedby7
dc.contributor.authorJamma A.en_US
dc.contributor.authorJaksani B.en_US
dc.contributor.authorVennapoosa C.S.en_US
dc.contributor.authorGonuguntla S.en_US
dc.contributor.authorSk S.en_US
dc.contributor.authorAhmadipour M.en_US
dc.contributor.authorAbraham B M.en_US
dc.contributor.authorMondal I.en_US
dc.contributor.authorPal U.en_US
dc.contributor.authorid58136696100en_US
dc.contributor.authorid58817033100en_US
dc.contributor.authorid57566914300en_US
dc.contributor.authorid57208838774en_US
dc.contributor.authorid57222470950en_US
dc.contributor.authorid55533484700en_US
dc.contributor.authorid57191525848en_US
dc.contributor.authorid56448992600en_US
dc.contributor.authorid8908351700en_US
dc.date.accessioned2025-03-03T07:44:41Z
dc.date.available2025-03-03T07:44:41Z
dc.date.issued2024
dc.description.abstractIn this report, we uncover the synergistic role of g-C3N4, a cocatalyst (Ni), and defect sites of Zr-MOFs for unprecedented hydrogen evolution activity. Further, the interaction between defect rich UiO-66-D and g-C3N4 is well-supported by theoretical understanding and photocatalysis trends. The key role in the enhanced activity is further substantiated by considering the abundant type-II heterojunction between UiO-66-D and g-C3N4 in the hybrid composite. This study emphasizes the significance of defect-induced local strain and modification of the electronic structure at the junction connecting UiO-66 and g-C3N4 along with Ni NPs, demonstrating their role in the catalytic activity. Ligand oriented defect engineering is deliberately utilized to manipulate photonic and electrical attributes of the UiO-66 framework. Improved catalytic performance is ascribed to structural stabilization of the composite by the introduction of unsaturation in UiO-66 and suitable coordinated Ni NPs over g-C3N4, resulting in a multi-fold enhancement of the hydrogen production rate of 2.6 mmol g?1 h?1 with an AQY of 6.41% at 420 nm as compared to the pristine material. ? 2024 RSC.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo880
dc.identifier.doi10.1039/d3ma00880k
dc.identifier.epage2796
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85182577329
dc.identifier.spage2785
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85182577329&doi=10.1039%2fd3ma00880k&partnerID=40&md5=510f27c3257c4d3e7e5df8c027730439
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36789
dc.identifier.volume5
dc.pagecount11
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofAll Open Access; Gold Open Access
dc.sourceScopus
dc.sourcetitleMaterials Advances
dc.subjectError correction
dc.subjectHydrogen evolution reaction
dc.subjectLayered semiconductors
dc.subjectPhotocatalytic activity
dc.subjectCo catalysts
dc.subjectDefect engineering
dc.subjectDefect sites
dc.subjectDefects induced
dc.subjectElectronic.structure
dc.subjectHybrid composites
dc.subjectHydrogen-evolution
dc.subjectLocal strains
dc.subjectType II heterojunction
dc.subjectWater splitting
dc.subjectDefects
dc.titleDefect-rich UiO-66@g-C3N4/Ni frameworks as efficient water splitting photocatalystsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections