Publication:
Optimal evaluation of photovoltaic-thermal solar collectors cooling using a half-tube of different diameters and lengths

dc.citedby10
dc.contributor.authorMaseer M.M.en_US
dc.contributor.authorIsmail F.B.en_US
dc.contributor.authorKazem H.A.en_US
dc.contributor.authorWai L.C.en_US
dc.contributor.authorHadi Al-Gburi K.A.en_US
dc.contributor.authorid57218370007en_US
dc.contributor.authorid58027086700en_US
dc.contributor.authorid24466476000en_US
dc.contributor.authorid58739596600en_US
dc.contributor.authorid57760287000en_US
dc.date.accessioned2025-03-03T07:48:38Z
dc.date.available2025-03-03T07:48:38Z
dc.date.issued2024
dc.description.abstractPhotovoltaic Thermal Solar Collectors (PVTs) combine the advantages of photovoltaic (PV) and solar thermal collectors to produce electricity and heat simultaneously. This study proposes a numerical model to investigate the effectiveness of using half-circular tubes to improve thermal conductivity and increase the interaction area between PV panels and tubes. This enhances heat transfer from the PV panels to the working fluid (water) circulating through the thermal absorber. Additionally, the integration of phase change material (PCM) is explored to further boost thermal conductivity and generate hot water. The research focuses on modeling the cooling of solar PV panels using copper half-tubes. The PV panels measure 870 ? 665 ? 3 mm and generate a power output of 100 W. The study examines the impact of key variables such as tube diameter (three standard sizes: 10, 12, and 15 mm) and fluid flow rate (0.008 to 0.04 kg/s). Solar radiation equations are incorporated, and the finite volume approach, implemented in the ANSYS 19.0 software's CFX modeling framework, is used as the underlying methodology. The investigation culminates in an optimization process to determine the optimal operating conditions for the PV system. The results show that the highest electrical efficiency (13.15%) is achieved at a flow rate of 0.04 kg/s for 15 mm diameter tubes and 7 tubes in total. The peak thermal efficiency (74.28%) is observed under the same conditions. In conclusion, this study contributes to the understanding of enhancing PV/T system performance through innovative thermal management strategies and provides valuable optimization recommendations for achieving improved electrical and thermal efficiencies. ? 2023 International Solar Energy Societyen_US
dc.description.natureFinalen_US
dc.identifier.ArtNo112193
dc.identifier.doi10.1016/j.solener.2023.112193
dc.identifier.scopus2-s2.0-85178442392
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178442392&doi=10.1016%2fj.solener.2023.112193&partnerID=40&md5=7c4561080395ad0906dc29b61f155641
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/37204
dc.identifier.volume267
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleSolar Energy
dc.subjectCollector efficiency
dc.subjectFlow of fluids
dc.subjectHeat transfer
dc.subjectPhase change materials
dc.subjectSolar panels
dc.subjectSolar power generation
dc.subjectSolar thermal energy
dc.subjectThermal conductivity
dc.subjectThermal efficiency
dc.subjectTubes (components)
dc.subjectGrid-connected
dc.subjectGrid-connected photovoltaic/T system
dc.subjectHalf-circle tube
dc.subjectOptimisations
dc.subjectOptimization of photovoltaic performance
dc.subjectPhotovoltaic performance
dc.subjectPhotovoltaic thermal collector
dc.subjectPhotovoltaic thermals
dc.subjectPhotovoltaics
dc.subjectT-Systems
dc.subjectThermal collectors
dc.subjectThermal conductivity enhancement
dc.subjectcooling
dc.subjectcopper
dc.subjectelectricity
dc.subjectfluid flow
dc.subjectheat transfer
dc.subjectnumerical model
dc.subjectphotovoltaic system
dc.subjectthermal conductivity
dc.subjectElectrical efficiency
dc.titleOptimal evaluation of photovoltaic-thermal solar collectors cooling using a half-tube of different diameters and lengthsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections