Publication:
A practical investigation on nickel plated copper heat spreader with different catalytic activation processes for flip-chip ball grid array packages

dc.citedby8
dc.contributor.authorAmin N.en_US
dc.contributor.authorLim V.en_US
dc.contributor.authorSeng F.C.en_US
dc.contributor.authorRazid R.en_US
dc.contributor.authorAhmad I.en_US
dc.contributor.authorid7102424614en_US
dc.contributor.authorid26432767800en_US
dc.contributor.authorid26432892000en_US
dc.contributor.authorid26432743300en_US
dc.contributor.authorid12792216600en_US
dc.date.accessioned2023-12-29T07:56:04Z
dc.date.available2023-12-29T07:56:04Z
dc.date.issued2009
dc.description.abstractThis study investigates the effects of two different catalytic activation techniques on the thermal performance of the flip-chip heat spreaders. The two activation techniques studied are thin nickel-copper strike and galvanic initiation. Thermal diffusivity and surface roughness of these heat spreaders were studied using the Nano-flash Apparatus and Infinite Focus Microscopy. High temperature storage tests were carried out to investigate the extent of intermetallic diffusion between the nickel and copper layers. The results show that heat spreaders with thin nickel-copper strike catalytic activation technique have a lower thermal diffusivity due to the low thermal conductivity of nickel-copper layer. Moreover, the nickel-copper layers grew thicker from around 0.2 ?m at initial time to around 0.55 ?m after high temperature storage duration of 168 h. On the other hand, heat spreaders processed using the galvanic initiation technique did not form any nickel-copper intermetallic diffusion layer. As a conclusion, the galvanic initiation technique can potentially provide better thermal performance for heat spreaders used in semiconductor packages. � 2009 Elsevier Ltd. All rights reserved.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.microrel.2009.02.013
dc.identifier.epage543
dc.identifier.issue5
dc.identifier.scopus2-s2.0-67349100528
dc.identifier.spage537
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-67349100528&doi=10.1016%2fj.microrel.2009.02.013&partnerID=40&md5=f5c9ba763599df05424c2252ba3aeef4
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30930
dc.identifier.volume49
dc.pagecount6
dc.sourceScopus
dc.sourcetitleMicroelectronics Reliability
dc.subjectCopper
dc.subjectElectric batteries
dc.subjectElectronics packaging
dc.subjectFlip chip devices
dc.subjectHeating equipment
dc.subjectMixed convection
dc.subjectNickel
dc.subjectNickel alloys
dc.subjectSurface roughness
dc.subjectThermal conductivity
dc.subjectThermal diffusion
dc.subjectActivation techniques
dc.subjectAfter high temperatures
dc.subjectCatalytic activations
dc.subjectCopper heat spreaders
dc.subjectCopper layers
dc.subjectCopper strikes
dc.subjectFlip chips
dc.subjectFlip-chip ball grid arrays
dc.subjectHeat spreaders
dc.subjectHigh temperature storage tests
dc.subjectInitial time
dc.subjectIntermetallic diffusions
dc.subjectLow thermal conductivities
dc.subjectPractical investigations
dc.subjectSemiconductor packages
dc.subjectThermal performance
dc.subjectSpreaders
dc.titleA practical investigation on nickel plated copper heat spreader with different catalytic activation processes for flip-chip ball grid array packagesen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections