Publication:
Unveiling the future: A simulation and analysis of hydrogen production using 1kW electrolyzer with MATLAB approach

dc.citedby0
dc.contributor.authorTak Y.C.en_US
dc.contributor.authorPaw J.K.S.en_US
dc.contributor.authorKadirgama K.en_US
dc.contributor.authorRamasamy D.en_US
dc.contributor.authorAhmed O.A.en_US
dc.contributor.authorPasupuleti J.en_US
dc.contributor.authorBenedict F.en_US
dc.contributor.authorSamylingam L.en_US
dc.contributor.authorKok C.K.en_US
dc.contributor.authorid36560884300en_US
dc.contributor.authorid58168727000en_US
dc.contributor.authorid12761486500en_US
dc.contributor.authorid26325891500en_US
dc.contributor.authorid33267553600en_US
dc.contributor.authorid11340187300en_US
dc.contributor.authorid57194591957en_US
dc.contributor.authorid57203121542en_US
dc.contributor.authorid54942586300en_US
dc.date.accessioned2025-03-03T07:41:28Z
dc.date.available2025-03-03T07:41:28Z
dc.date.issued2024
dc.description.abstractThis research concentrates on optimizing hydrogen production via a 1kW electrolyzer powered by renewable solar energy, specifically targeting efficiency enhancement through adjusting membrane area. The rising global demand for clean energy solutions has positioned hydrogen as a pivotal element in the shift toward sustainable energy systems. Nonetheless, the efficacy of hydrogen generation via electrolysis continues to pose a challenge, particularly at reduced scales. This research involved the creation of a comprehensive simulation model utilizing MATLAB Simulink to investigate the impact of membrane area variations on hydrogen production and overall system efficiency. The simulation results indicate that optimizing the membrane area can substantially enhance hydrogen production rates. The system was capable of producing up to 2.5 kg/h of hydrogen, signifying a substantial enhancement over traditional methods. Moreover, incorporating solar energy as the principal power source diminishes environmental repercussions while guaranteeing a sustainable and clean approach to hydrogen production. This research introduces an innovative method for optimizing small-scale electrolyzers, offering insights applicable to industrial hydrogen production and the integration of renewable energy. The findings facilitate the advancement of sustainable hydrogen production technologies, consistent with international initiatives to diminish dependence on fossil fuels. ? 2024en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo103460
dc.identifier.doi10.1016/j.rineng.2024.103460
dc.identifier.scopus2-s2.0-85210603226
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85210603226&doi=10.1016%2fj.rineng.2024.103460&partnerID=40&md5=02f29f3173da4abce1cf769ab537a562
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36155
dc.identifier.volume24
dc.publisherElsevier B.V.en_US
dc.relation.ispartofAll Open Access; Gold Open Access
dc.sourceScopus
dc.sourcetitleResults in Engineering
dc.subjectMATLAB
dc.subjectSolar energy
dc.subjectClean energy
dc.subjectEfficiency enhancement
dc.subjectElectrolyzers
dc.subjectEnergy solutions
dc.subjectEnvironmentally
dc.subjectGlobal demand
dc.subjectMembrane area
dc.subjectRenewable energy (Solar)
dc.subjectSimulation and analysis
dc.subjectSustainable energy systems
dc.subjectClean energy
dc.titleUnveiling the future: A simulation and analysis of hydrogen production using 1kW electrolyzer with MATLAB approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections