Publication:
Influence of crystalline Zn-Ag nanoalloy electrodeposits on their anti-corrosion and hardness performance in engineering applications

dc.citedby0
dc.contributor.authorGnanamuthu R.M.en_US
dc.contributor.authorSaravanan G.en_US
dc.contributor.authorKandasamy M.en_US
dc.contributor.authorJesudoss S.K.en_US
dc.contributor.authorPonraj G.B.en_US
dc.contributor.authorRajkumar P.en_US
dc.contributor.authorSivakumar M.en_US
dc.contributor.authorJothivenkatachalam K.en_US
dc.contributor.authorSrinivasan D.en_US
dc.contributor.authorid6507030333en_US
dc.contributor.authorid6601974611en_US
dc.contributor.authorid57052581200en_US
dc.contributor.authorid56454308100en_US
dc.contributor.authorid59150853700en_US
dc.contributor.authorid59219616500en_US
dc.contributor.authorid7004952579en_US
dc.contributor.authorid47561511000en_US
dc.contributor.authorid56622471900en_US
dc.date.accessioned2025-03-03T07:42:17Z
dc.date.available2025-03-03T07:42:17Z
dc.date.issued2024
dc.description.abstractThe main goal of the current work is to develop external excellence, hardness, and anti-corrosion quality materials for engineering and metal finishing applications. To design and prepare a binary type of Zn-Ag nanoparticles as an alloy substantial over on mild steel (MS) engineering substrate using direct current (DC) electrochemical deposition. In this regard, silver nanoparticles are evenly distributed throughout the pure zinc with high-quality surface. Some different bath compositions, experimental settings, and parameters are used to optimize Zn-Ag nanoalloy coatings. The prepared specimen is examined using energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (FE-SEM), and X-ray diffraction (XRD). The XRD data for the AgZn3 phase demonstrate well-crystalline properties with reference pattern JCPDS 00?025-1325. Investigations are conducted into electrochemical research, including the Tafel corrosion test and electrochemical impedance spectroscopy (EIS). The results showed AgZn3 and Zn lower values of Icorr (1 ? 10?5 A cm?2) compared to the Zn (1 ? 10?3) sample, a greater corrosion potential (Ecorr) of ? 0.9�V and ? 0.6�V, respectively, when deposited on MS substrate. For technical and automotive applications, the produced AgZn3 on MS therefore shows the optimum corrosion resistance and hardness surface with compact microstructure. ? The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s11581-024-05600-7
dc.identifier.epage4852
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85194771032
dc.identifier.spage4845
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85194771032&doi=10.1007%2fs11581-024-05600-7&partnerID=40&md5=63db154c4f0bc6205bf1f9ce12e3ac5e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36408
dc.identifier.volume30
dc.pagecount7
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceScopus
dc.sourcetitleIonics
dc.subjectCorrosion resistance
dc.subjectCorrosion resistant coatings
dc.subjectElectrochemical corrosion
dc.subjectElectrochemical deposition
dc.subjectElectrochemical impedance spectroscopy
dc.subjectEnergy dispersive spectroscopy
dc.subjectHardness
dc.subjectMetal nanoparticles
dc.subjectMetal substrates
dc.subjectReduction
dc.subjectScanning electron microscopy
dc.subjectSilver alloys
dc.subjectSilver nanoparticles
dc.subjectX ray diffraction
dc.subjectZinc alloys
dc.subject'current
dc.subjectAg-zn coating
dc.subjectAnti-corrosion
dc.subjectAnti-corrosion quality
dc.subjectEngineering applications
dc.subjectFinishing applications
dc.subjectNano-alloys
dc.subjectPerformance
dc.subjectQuality materials
dc.subjectSteel engineering
dc.subjectBinary alloys
dc.titleInfluence of crystalline Zn-Ag nanoalloy electrodeposits on their anti-corrosion and hardness performance in engineering applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections