Publication:
Metal-Doped perovskite oxide Ba(1-x)Sr(x)TiO3 as electron transport layer for enhanced photovoltaic performance: An FDTD study

dc.citedby1
dc.contributor.authorMahmood M.en_US
dc.contributor.authorSobayel K.en_US
dc.contributor.authorNoor K.en_US
dc.contributor.authorMohd Izhar Sapeli M.en_US
dc.contributor.authorMofazzal Hossain M.en_US
dc.contributor.authorNur-E Alam M.en_US
dc.contributor.authorAdib Ibrahim M.en_US
dc.contributor.authorSoliman M.S.en_US
dc.contributor.authorTariqul Islam M.en_US
dc.contributor.authorid59239182000en_US
dc.contributor.authorid57194049079en_US
dc.contributor.authorid59239264700en_US
dc.contributor.authorid59179542200en_US
dc.contributor.authorid54889166300en_US
dc.contributor.authorid57197752581en_US
dc.contributor.authorid59179686400en_US
dc.contributor.authorid59095801100en_US
dc.contributor.authorid57219314561en_US
dc.date.accessioned2025-03-03T07:41:32Z
dc.date.available2025-03-03T07:41:32Z
dc.date.issued2024
dc.description.abstractThis work investigates the potential of BaTiO3 (BTO) and Sr-doped BaTiO3 (BST) as electron transport layers (ETL) in perovskite solar cells (PSCs) through Finite-Difference Time-Domain (FDTD) simulations. A comprehensive analysis was conducted to optimize the thickness of each layer in the PSC structure, with the aim of enhancing the photovoltaic performance and stability. Results indicate that BST-based PSCs exhibit superior optical and electronic properties compared to BTO-based PSCs, achieving higher ultimate efficiency (28.65 %) and power conversion efficiency (16.32 %). This improvement is attributed to better band alignment and higher electron mobility in BST, which enhances charge separation and reduces recombination losses. Optical analysis reveals that BST-based PSCs have a consistently higher spectral response across all wavelengths, indicating more effective light absorption and conversion into electrical current. The external quantum efficiency (EQE) of BST-based PSCs is consistently higher, resulting in an increase in Jsc of 16.87 mA/cm2 compared to 15.96 mA/cm2 for BTO-based cells. These findings highlight the potential of BST as a superior ETL material for high-performance PSCs, offering light management and charge-transport properties improved compared to those of conventional BTO-based ETLs. ? 2024 International Solar Energy Societyen_US
dc.description.natureFinalen_US
dc.identifier.ArtNo112987
dc.identifier.doi10.1016/j.solener.2024.112987
dc.identifier.scopus2-s2.0-85205970556
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85205970556&doi=10.1016%2fj.solener.2024.112987&partnerID=40&md5=e234427b2bc83d29a9b9a90cb41f11f2
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36187
dc.identifier.volume283
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleSolar Energy
dc.subjectBarium strontium titanate
dc.subjectConversion efficiency
dc.subjectElectric losses
dc.subjectElectron mobility
dc.subjectEnergy gap
dc.subjectFerroelectricity
dc.subjectLuminescence of liquids and solutions
dc.subjectPerovskite
dc.subjectQuantum efficiency
dc.subjectStrontium compounds
dc.subjectTitanium dioxide
dc.subjectTransparent conducting oxides
dc.subjectBaTiO 3
dc.subjectDomain study
dc.subjectElectron transport layers
dc.subjectFinite difference time domains
dc.subjectLight management
dc.subjectMetal-doped
dc.subjectPerovskite oxides
dc.subjectPhotovoltaic performance
dc.subjectSr doped
dc.subjectTiO
dc.subjectelectron
dc.subjectfuel cell
dc.subjectinorganic compound
dc.subjectperformance assessment
dc.subjectperovskite
dc.subjectphotovoltaic system
dc.subjectseparation
dc.subjectBarium titanate
dc.titleMetal-Doped perovskite oxide Ba(1-x)Sr(x)TiO3 as electron transport layer for enhanced photovoltaic performance: An FDTD studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections