Publication:
An effective strategy for unit commitment of microgrid power systems integrated with renewable energy sources including effects of battery degradation and uncertainties

Date
2024
Authors
Manoharan P.
Chandrasekaran K.
Chandran R.
Ravichandran S.
Mohammad S.
Jangir P.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Research Projects
Organizational Units
Journal Issue
Abstract
The large use of renewable sources and plug-in electric vehicles (PEVs) would play a critical part in achieving a low-carbon energy source and reducing greenhouse gas emissions, which are the primary cause of global warming. On the other hand, predicting the instability and intermittent nature of wind and solar power output poses significant challenges. To reduce the unpredictable and random nature of renewable microgrids (MGs) and additional unreliable energy sources, a battery energy storage system (BESS) is connected to an MG system. The uncoordinated charging of PEVs offers further hurdles to the unit commitment (UC) required in contemporary MG management. The UC problem is an exceptionally difficult optimization problem due to the mixed-integer structure, large scale, and nonlinearity. It is further complicated by the multiple uncertainties associated with renewable sources, PEV charging and discharging, and electricity market pricing, in addition to the BESS degradation factor. Therefore, in this study, a new variant of mixed-integer particle swarm optimizer is introduced as a reliable optimization framework to handle the UC problem. This study considers�six various case studies of UC problems, including uncertainties and battery degradation to validate the reliability and robustness of the proposed algorithm. Out of which, two case studies defined as a multiobjective problem, and it has been transformed into a single-objective model using different weight factors. The simulation findings demonstrate that the proposed approach and improved methodology for the UC problem are effective�than its�peers. Based on the average results, the economic consequences of numerous scenarios are thoroughly examined and contrasted, and some significant conclusions are presented. ? The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Description
Keywords
Electric Power Supplies , Energy-Generating Resources , Renewable Energy , Reproducibility of Results , Solar Energy , Wind , Charging (batteries) , Electric energy storage , Gas emissions , Global warming , Integer programming , Particle swarm optimization (PSO) , Plug-in electric vehicles , Secondary batteries , Solar energy , Energy , Microgrid , Mixed integer , Mixed-integer algorithm , Particle swarm , Particle swarm optimization , Swarm optimization , Uncertainty , Unit Commitment , Unit-commitment problems , algorithm , alternative energy , degradation , electric vehicle , electricity , energy storage , fuel cell , greenhouse gas , integrated approach , optimization , smart grid , strategic approach , uncertainty analysis , energy resource , power supply , renewable energy , reproducibility , solar energy , wind , Greenhouse gases
Citation
Collections