Publication:
Optimization of novel two-step curing method for die stack epoxy bonding to reduce voids in Ball Grid Array packages for high-density interconnect applications

dc.citedby0
dc.contributor.authorNg Q.Q.en_US
dc.contributor.authorTan C.Y.en_US
dc.contributor.authorWong Y.H.en_US
dc.contributor.authorYap B.K.en_US
dc.contributor.authorYusof F.B.en_US
dc.contributor.authorSaher S.en_US
dc.contributor.authorid59185580100en_US
dc.contributor.authorid16029485400en_US
dc.contributor.authorid36605495300en_US
dc.contributor.authorid26649255900en_US
dc.contributor.authorid36706857100en_US
dc.contributor.authorid36134688200en_US
dc.date.accessioned2025-03-03T07:42:27Z
dc.date.available2025-03-03T07:42:27Z
dc.date.issued2024
dc.description.abstractThis research explores the optimization of epoxy curing parameters to minimize void formation in 3-IC-Chip-MAPBGA packages, a subset of BGA packages, crucial components in high-density interconnect applications. The study utilizes a systematic approach involving design of experiments (DOE) assisted by statistical JMP tool to manipulate curing profiles, aiming to achieve void reduction while preserving adhesion properties. Various analytical techniques, including X-ray imaging, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), die shear strength tests, and C-Sam analysis for delamination, are employed to analyze void formation, material characteristics, mechanical properties, and structural integrity. The findings demonstrate that the sample with a 2nd step curing profile, identified as sample#3, which includes a ramp time of 15 min, a 1st step curing temperature of 90 �C with a soak time of 20 min, and a 2nd step ramp time of 20 min, exhibits the most favourable outcome in void reduction. This sample shows a notably lower void presence of 3.66 % and the highest die shear strength of 126 MPa. In contrast, the control sample, serving as a reference, displays a void percentage of 7.28 %, nearly twice as high as that of sample#3, and much lower die shear strength of 80 MPa at 25 �C. Adopting the curing profile of sample#3 also leads to a substantial 18.75 % reduction in cycle time compared to the control sample. The study highlights the importance of balancing curing parameters to mitigate void formation and maintain optimal mechanical properties, offering valuable insights for improving the reliability of high-density interconnect applications. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo115450
dc.identifier.doi10.1016/j.microrel.2024.115450
dc.identifier.scopus2-s2.0-85196704257
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85196704257&doi=10.1016%2fj.microrel.2024.115450&partnerID=40&md5=8495956744b1133bb8c7c3063dc28c5b
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36444
dc.identifier.volume159
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleMicroelectronics Reliability
dc.subjectCuring
dc.subjectDesign of experiments
dc.subjectDies
dc.subjectDifferential scanning calorimetry
dc.subjectElectronics packaging
dc.subjectIntegrated circuit interconnects
dc.subjectThermogravimetric analysis
dc.subject% reductions
dc.subjectBall grid array
dc.subjectBall-grid arrays
dc.subjectCuring profile
dc.subjectEpoxy
dc.subjectHigh density interconnects
dc.subjectInterconnect applications
dc.subjectOptimisations
dc.subjectShears strength
dc.subjectVoids formation
dc.subjectBall grid arrays
dc.titleOptimization of novel two-step curing method for die stack epoxy bonding to reduce voids in Ball Grid Array packages for high-density interconnect applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections