Publication:
Classification of electrical appliances using magnetic field and probabilistic neural network

dc.citedby1
dc.contributor.authorRosdi N.A.M.en_US
dc.contributor.authorNordin F.H.en_US
dc.contributor.authorRamasamy A.K.en_US
dc.contributor.authorMustafa N.B.A.en_US
dc.contributor.authorid56405584900en_US
dc.contributor.authorid25930510500en_US
dc.contributor.authorid16023154400en_US
dc.contributor.authorid57191952020en_US
dc.date.accessioned2023-05-16T02:45:47Z
dc.date.available2023-05-16T02:45:47Z
dc.date.issued2014
dc.description.abstractMany researches have proven that power lines and electrical appliances do emit electromagnetic fields and can be harmful to human's health. However, research on the effect of the magnetic fields on human's health is not yet conclusive. Instead of letting the magnetic fields emit by the electrical appliances be wasted, this paper aims to use the magnetic fields to classify or identify the electrical appliances being used. Table fans, blenders and hairdryers are the electrical appliances used for this purpose where they are divided into three different categories of usage i.e. (i) used less than 1year (ii) used between 1 to 5 years and (iii) used more than 5 years. The magnetic fields are measured from all the nine appliances. Then, the features of the magnetic fields are extracted and trained offline using the Probabilistic Neural Network (PNN). From the results, it is shown that the PNN is able to identify the type of electrical appliance being used regardless of the appliances years of usage using magnetic fields emitted by the appliances. © 2014 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo6908735
dc.identifier.doi10.1109/ICSGRC.2014.6908735
dc.identifier.epage273
dc.identifier.scopus2-s2.0-84908631816
dc.identifier.spage268
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84908631816&doi=10.1109%2fICSGRC.2014.6908735&partnerID=40&md5=627fa23bba34e5aeb36120841396e55b
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/21865
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceScopus
dc.sourcetitleProceedings - 2014 5th IEEE Control and System Graduate Research Colloquium, ICSGRC 2014
dc.titleClassification of electrical appliances using magnetic field and probabilistic neural networken_US
dc.typeConference Paperen_US
dspace.entity.typePublication
Files
Collections