Publication:
Investigation of micromachined antenna substrates operating at 5 GHz for RF energy harvesting applications

dc.citedby14
dc.contributor.authorYunus N.H.M.en_US
dc.contributor.authorYunas J.en_US
dc.contributor.authorPawi A.en_US
dc.contributor.authorRhazali Z.A.en_US
dc.contributor.authorSampe J.en_US
dc.contributor.authorid57189037304en_US
dc.contributor.authorid24069611600en_US
dc.contributor.authorid36608900900en_US
dc.contributor.authorid16022936300en_US
dc.contributor.authorid23095535500en_US
dc.date.accessioned2023-05-29T07:30:37Z
dc.date.available2023-05-29T07:30:37Z
dc.date.issued2019
dc.descriptionBandwidth; CMOS integrated circuits; Electric rectifiers; Energy harvesting; Glass; MEMS; Metals; Microstrip antennas; Microwave antennas; MOS devices; Omnidirectional antennas; Oxide semiconductors; Permittivity; Rectennas; Silicon; Slot antennas; Substrates; Surface micromachining; Antenna gains; Dielectric permittivities; ISM bands; Micromachined antenna; Rf energy harvesters; RT/Duroid 5880; Directional patterns (antenna)en_US
dc.description.abstractThis paper investigates micromachined antenna performance operating at 5 GHz for radio frequency (RF) energy harvesting applications by comparing different substrate materials and fabrication modes. The research aims to discover appropriate antenna designs that can be integrated with the rectifier circuit and fabricated in a CMOS (Complementary Metal-Oxide Semiconductor)-compatible process approach. Therefore, the investigation involves the comparison of three different micromachined antenna substrate materials, including micromachined Si surface, micromachined Si bulk with air gaps, and micromachined glass-surface antenna, as well as conventional RT/Duroid-5880 (Rogers Corp., Chandler, AZ, USA)-based antenna as the reference. The characteristics of the antennas have been analysed using CST-MWS (CST MICROWAVE STUDIO�-High Frequency EM Simulation Tool). The results show that the Si-surface micromachined antenna does not meet the parameter requirement for RF antenna specification. However, by creating an air gap on the Si substrate using a micro-electromechanical system (MEMS) process, the antenna performance could be improved. On the other hand, the glass-based antenna presents a good S11 parameter, wide bandwidth, VSWR (Voltage Standing Wave Ratio) ? 2, omnidirectional radiation pattern and acceptable maximum gain of > 5 dB. The measurement results on the fabricated glass-based antenna show good agreement with the simulation results. The study on the alternative antenna substrates and structures is especially useful for the development of integrated patch antennas for RF energy harvesting systems. � 2019 by the authors.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo146
dc.identifier.doi10.3390/mi10020146
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85063568089
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063568089&doi=10.3390%2fmi10020146&partnerID=40&md5=41953d3d8c519d5d5acfc328125193f0
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/25027
dc.identifier.volume10
dc.publisherMDPI AGen_US
dc.relation.ispartofAll Open Access, Gold, Green
dc.sourceScopus
dc.sourcetitleMicromachines
dc.titleInvestigation of micromachined antenna substrates operating at 5 GHz for RF energy harvesting applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections