Publication:
Estimating Enhanced Endogenous Glucose Production in Intensive Care Unit Patients with Severe Insulin Resistance

dc.citedby2
dc.contributor.authorYahia A.en_US
dc.contributor.authorSzl�vecz �.en_US
dc.contributor.authorKnopp J.L.en_US
dc.contributor.authorNorfiza Abdul Razak N.en_US
dc.contributor.authorAbu Samah A.en_US
dc.contributor.authorShaw G.en_US
dc.contributor.authorChase J.G.en_US
dc.contributor.authorBenyo B.en_US
dc.contributor.authorid57224210004en_US
dc.contributor.authorid6505809017en_US
dc.contributor.authorid57202741591en_US
dc.contributor.authorid37059587300en_US
dc.contributor.authorid56719596600en_US
dc.contributor.authorid7401773560en_US
dc.contributor.authorid35570524900en_US
dc.contributor.authorid15757116300en_US
dc.date.accessioned2023-05-29T09:36:40Z
dc.date.available2023-05-29T09:36:40Z
dc.date.issued2022
dc.descriptionglucose; glucose; insulin; adult; Article; blood glucose monitoring; cohort analysis; critically ill patient; disease simulation; female; finite element analysis; gluconeogenesis; glucose blood level; glycemic control; human; Hungary; hyperglycemia; hyperinsulinemia; insulin resistance; insulin sensitivity; intensive care unit; major clinical study; Malaysia; male; New Zealand; physiological stress; simulation; critical illness; hyperglycemia; intensive care; intensive care unit; procedures; Blood Glucose; Critical Care; Critical Illness; Glucose; Humans; Hyperglycemia; Insulin; Insulin Resistance; Intensive Care Unitsen_US
dc.description.abstractBackground: Critically ill ICU patients frequently experience acute insulin resistance and increased endogenous glucose production, manifesting as stress-induced hyperglycemia and hyperinsulinemia. STAR (Stochastic TARgeted) is a glycemic control protocol, which directly manages inter- and intra- patient variability using model-based insulin sensitivity (SI). The model behind STAR assumes a population constant for endogenous glucose production (EGP), which is not otherwise identifiable. Objective: This study analyses the effect of estimating EGP for ICU patients with very low SI (severe insulin resistance) and its impact on identified, model-based insulin sensitivity identification, modeling accuracy, and model-based glycemic clinical control. Methods: Using clinical data from 717 STAR patients in 3 independent cohorts (Hungary, New Zealand, and Malaysia), insulin sensitivity, time of insulin resistance, and EGP values are analyzed. A method is presented to estimate EGP in the presence of non-physiologically low SI. Performance is assessed via model accuracy. Results: Results show 22%-62% of patients experience 1+ episodes of severe insulin resistance, representing 0.87%-9.00% of hours. Episodes primarily occur in the first 24 h, matching clinical expectations. The Malaysian cohort is most affected. In this subset of hours, constant model-based EGP values can bias identified SI and increase blood glucose (BG) fitting error. Using the EGP estimation method presented in these constrained hours significantly reduced BG fitting errors. Conclusions: Patients early in ICU stay may have significantly increased EGP. Increasing modeled EGP in model-based glycemic control can improve control accuracy in these hours. The results provide new insight into the frequency and level of significantly increased EGP in critical illness. � 2021 Diabetes Technology Society.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1177/19322968211018260
dc.identifier.epage1219
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85107261519
dc.identifier.spage1208
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107261519&doi=10.1177%2f19322968211018260&partnerID=40&md5=209255ccc8008684ce5b6e431d53b017
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/26782
dc.identifier.volume16
dc.publisherSAGE Publications Inc.en_US
dc.relation.ispartofAll Open Access, Bronze, Green
dc.sourceScopus
dc.sourcetitleJournal of Diabetes Science and Technology
dc.titleEstimating Enhanced Endogenous Glucose Production in Intensive Care Unit Patients with Severe Insulin Resistanceen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections