Publication:
Effect of base fluid on mixed convection nanofluid flow over microscale backward-facing step

Date
2015
Authors
Kherbeet A.Sh.
Mohammed H.A.
Munisamy K.M.
Salman B.H.
Journal Title
Journal ISSN
Volume Title
Publisher
American Scientific Publishers
Research Projects
Organizational Units
Journal Issue
Abstract
The numerical implementation of laminar mixed convective flow over a 3-D horizontal microscale backward-facing step (MBFS) is presented to explore the effect of base fluid on the flow and heat transfer characteristics. The energy equations and momentum were discretized by means of a finite volume method (FVM). The SIMPLE algorithm used for the pressure correction and velocity fields in the entire domain in the procedure. The straight wall of the duct was at a constant temperature (Tw = 323 K). While the downstream wall maintained at uniform heat flux (Qw = 12 Watt). The SiO2 nanoparticles with diameter of 25 nm and volume fraction of 0.04 were immersed in four kinds of base fluids (glycerin, engine oil, ethylene glycol and water). The Reynolds number is maintained at Re = 35, and step height was 650 ?m. The results revealed that the highest Nusselt number was with using glycerin as a base fluid. It is also revealed that the skin friction coefficient was higher with using water as a base fluid. Copyright � 2015 American Scientific Publishers.
Description
Ethylene; Ethylene glycol; Facings; Finite volume method; Friction; Glycerol; Heat convection; Heat flux; Mixed convection; Nanofluidics; Nanoparticles; Reynolds number; Velocity; Backward facing step; Constant temperature; Flow and heat transfer; Heat Transfer enhancement; Mixed convective flow; Nanofluids; Numerical implementation; Skin friction coefficient; Heat transfer
Keywords
Citation
Collections