Publication:
Elevated symmetric supercapacitor performance and simulated solar light-functioning H2O2 production using single-step fabricated 2D/2D NiAl-based LDH/CoNi-based MOF nanohybrid

dc.citedby5
dc.contributor.authorHusain A.en_US
dc.contributor.authorLee D.-E.en_US
dc.contributor.authorDanish M.en_US
dc.contributor.authorAnsari M.N.M.en_US
dc.contributor.authorShin S.-H.en_US
dc.contributor.authorLee J.-Y.en_US
dc.contributor.authorLee J.-W.en_US
dc.contributor.authorJo W.-K.en_US
dc.contributor.authorid57215031715en_US
dc.contributor.authorid56605563300en_US
dc.contributor.authorid57216220743en_US
dc.contributor.authorid55489853600en_US
dc.contributor.authorid36342915300en_US
dc.contributor.authorid55710927600en_US
dc.contributor.authorid59213816600en_US
dc.contributor.authorid7103322277en_US
dc.date.accessioned2025-03-03T07:42:13Z
dc.date.available2025-03-03T07:42:13Z
dc.date.issued2024
dc.description.abstractCombining photocatalytic hydrogen peroxide (H2O2) production with supercapacitors offers a synergistic solution to address both solar-driven catalysis and energy storage challenges. In this connection, this study explored a novel, one-step thermal impregnation method for synthesizing a high-performance nanohybrid material. The unique combination of nickel-aluminum layered double hydroxides (NiAl-L) and Co/Ni-based metal-organic framework (CoNi-M) synergistically enhances electrochemical performance, leading to improved energy storage capacity. Interestingly, the NiAl-L/CoNi-M nanohybrid heterojunction exhibits remarkable characteristics in a three-electrode system, achieving an impressive specific capacitance of 2672.3 Fg?1 at 1 A g?1. It also demonstrates outstanding cyclic stability, retaining 93.6 % of its capacity even after 5000 galvanostatic charge-discharge (GCD) cycles. Moreover, the symmetrical supercapacitor device made of NiAl-L/CoNi-M demonstrates outstanding performance, sustaining 90.9 % capacity after 5000 GCD cycles, with a specific capacitance of 309.7 Fg?1 at 1 Ag?1 and a high energy density of 43 WhKg?1. Additionally, the synergistic combination of NiAl-L and CoNi-M enhances the photocatalytic performance, achieving an H2O2 evolution rate of 334.86 ?mol L?1 h?1 under simulated solar light irradiation. This rate is 2.61, 3.81, and 5.81 times greater than that of pure CoNi-M, Co-M, and NiAl-L, respectively, highlighting the potential of NiAl-L/CoNi-M nanohybrid for sustainable energy application. ? 2024en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo104749
dc.identifier.doi10.1016/j.surfin.2024.104749
dc.identifier.scopus2-s2.0-85198215055
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85198215055&doi=10.1016%2fj.surfin.2024.104749&partnerID=40&md5=95f2b2557106c04d5fd4e51cbb5b4899
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36396
dc.identifier.volume51
dc.publisherElsevier B.V.en_US
dc.sourceScopus
dc.sourcetitleSurfaces and Interfaces
dc.titleElevated symmetric supercapacitor performance and simulated solar light-functioning H2O2 production using single-step fabricated 2D/2D NiAl-based LDH/CoNi-based MOF nanohybriden_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections