Publication:
Combined convection nanofluid flow and heat transfer over microscale forward-facing step

dc.citedby8
dc.contributor.authorKherbeet A.Sh.en_US
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorMunisamy K.M.en_US
dc.contributor.authorSalman B.H.en_US
dc.contributor.authorid55260597800en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid15035918600en_US
dc.contributor.authorid48461700800en_US
dc.date.accessioned2023-05-16T02:47:36Z
dc.date.available2023-05-16T02:47:36Z
dc.date.issued2014
dc.description.abstractThe laminar mixed convection flow of nanofluids over a 3D horizontal microscale forward-facing step (MFFS) was numerically investigated using a finite volume method. Various nanoparticle materials, such as SiO2, Al2O3, CuO, and ZnO, were dispersed in ethylene glycol as a base fluid with volume fractions in the range of 0 and 0.04. The duct has a step height of 650 ìm. The downstream wall was heated with a uniform heat flux of 12 Watt, and the straight wall of the duct was kept at a constant temperature of 323 K. The Reynolds number value was maintained at 35. The results revealed that the SiO2 nanofluid had the highest Nusselt number, which increased with decreasing nanoparticle material density, increasing volume fraction and decreasing nanoparticles diameter. The static pressure and the wall shear stress increased with increasing particle volume fraction and decreasing particle diameter. Moreover, the nanoparticle volume faction, material and diameters had small effect on the skin friction coefficient. © 2014 Inderscience Enterprises Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1504/IJNP.2014.062008
dc.identifier.epage25
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84902001070
dc.identifier.spage1
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84902001070&doi=10.1504%2fIJNP.2014.062008&partnerID=40&md5=d53fdc55a03a4bd2a6acad9b54288b3e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/22124
dc.identifier.volume7
dc.publisherInderscience Publishersen_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Nanoparticles
dc.titleCombined convection nanofluid flow and heat transfer over microscale forward-facing stepen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections