Publication:
Fabricating of multi-interfacial charge transfer paths in the novel noble-metal-free Ni2P/ZnS/g-C3N4 ternary nanocomposite for enhanced charge separation and transfer for photocatalytic H2 generation

dc.citedby1
dc.contributor.authorRameshbabu R.en_US
dc.contributor.authorPaw J.K.S.en_US
dc.contributor.authorAjaijawahar K.en_US
dc.contributor.authorVinoth V.en_US
dc.contributor.authorJadoun S.en_US
dc.contributor.authorPugazhenthiran N.en_US
dc.contributor.authorKiong T.S.en_US
dc.contributor.authorid55621066400en_US
dc.contributor.authorid58168727000en_US
dc.contributor.authorid57218329653en_US
dc.contributor.authorid56662096500en_US
dc.contributor.authorid57189469761en_US
dc.contributor.authorid23989733500en_US
dc.contributor.authorid57216824752en_US
dc.date.accessioned2025-03-03T07:42:35Z
dc.date.available2025-03-03T07:42:35Z
dc.date.issued2024
dc.description.abstractThis work reports the development of a novel Ni?P/ZnS/C?N? ternary nanocomposite photocatalyst for efficient hydrogen (H?) production. The nanocomposite was synthesized using a facile approach combining hydrothermal synthesis, ball milling, and wet impregnation methods then characterized using various techniques. Photocatalytic H? generation was evaluated under simulated solar irradiation with sodium sulfite (Na?SO?)/sodium sulfide (Na?S) as sacrificial reagents. The optimized 3NP/ZnS-8CN (3% Ni2P/ZnS/8% C3N4) catalyst displayed an exceptional H? generation rate of 3991 �mol h?? g??, exceeding both pristine g-C3N4 (by 10.2 times) and 3% Ni2P/ZnS (by 1.2 times). This represents the highest reported rate of H? evolution for a graphitic carbon nitride (g-C3N4) based ternary nanocomposite under simulated solar radiation. Furthermore, the 3NP/ZnS-8CN photocatalyst exhibited good stability over four reaction cycles. This study provides valuable insights for designing efficient noble metal-free g-C3N4-based photocatalysts, which can significantly contribute to the transition to solar-driven hydrogen generation. The results of this study suggest that the synthesized composite materials hold significant promise for the advancement of new energy technologies. ? 2024 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo174830
dc.identifier.doi10.1016/j.jallcom.2024.174830
dc.identifier.scopus2-s2.0-85193497458
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85193497458&doi=10.1016%2fj.jallcom.2024.174830&partnerID=40&md5=28767af4b10c7a7672e009128ea59aed
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36469
dc.identifier.volume997
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleJournal of Alloys and Compounds
dc.subjectBall milling
dc.subjectCarbon nitride
dc.subjectCharge transfer
dc.subjectHydrogen production
dc.subjectHydrothermal synthesis
dc.subjectNanocomposites
dc.subjectPhotocatalytic activity
dc.subjectPrecious metals
dc.subjectSolar light
dc.subjectSolar power generation
dc.subjectCarrier transfer
dc.subjectCo-catalyse
dc.subjectEnergy
dc.subjectH 2 production
dc.subjectInterfacial charge transfer
dc.subjectMetal free
dc.subjectNi2P/ZnS/g-C3N4
dc.subjectPhoto-catalytic
dc.subjectSynthesised
dc.subjectTernary nanocomposites
dc.subjectSulfur compounds
dc.titleFabricating of multi-interfacial charge transfer paths in the novel noble-metal-free Ni2P/ZnS/g-C3N4 ternary nanocomposite for enhanced charge separation and transfer for photocatalytic H2 generationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections