Publication: Experimental and numerical study of nanofluid flow and heat transfer over microscale forward-facing step
No Thumbnail Available
Date
2014
Authors
Kherbeet A.S.
Mohammed H.A.
Munisamy K.M.
Saidur R.
Salman B.H.
Mahbubul I.M.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
Experimental and numerical investigations are presented to illustrate the nanofluid flow and heat transfer characteristics over microscale forward-facing step (MFFS). The duct inlet and the step height were 400?m and 600?m respectively. All the walls are considered adiabatic except the downstream wall was exposed to a uniform heat flux boundary condition. The distilled water was utilized as a base fluid with two types of nanoparticles Al2O3 and SiO2 suspended in the base fluid. The nanoparticle volume fraction range was from 0 to 0.01 with an average nanoparticle diameter of 30nm. The experiments were conducted at a Reynolds number range from 280 to 480. The experimental and numerical results revealed that the water-SiO2 nanofluid has the highest Nusselt number, and the Nusselt number increases with the increase of volume fraction. The average friction factor of water-Al2O3 was less than of water-SiO2 mixture and pure water. The experimental results showed 30.6% enhancement in the average Nusselt number using water-SiO2 nanofluid at 1% volume fraction. The numerical results were in a good agreement with the experimental results. © 2014 Elsevier Ltd.