Publication:
Enhanced hydrogen evolution reaction performance of anatase-rutile TiO2 heterojunction via charge transfer from rutile to anatase

dc.citedby4
dc.contributor.authorArzaee N.A.en_US
dc.contributor.authorYodsin N.en_US
dc.contributor.authorUllah H.en_US
dc.contributor.authorSultana S.en_US
dc.contributor.authorMohamad Noh M.F.en_US
dc.contributor.authorMahmood Zuhdi A.W.en_US
dc.contributor.authorMohd Yusoff A.R.B.en_US
dc.contributor.authorJungsuttiwong S.en_US
dc.contributor.authorMat Teridi M.A.en_US
dc.contributor.authorid57204034965en_US
dc.contributor.authorid57203536200en_US
dc.contributor.authorid57531625900en_US
dc.contributor.authorid42762342100en_US
dc.contributor.authorid57200419635en_US
dc.contributor.authorid56589966300en_US
dc.contributor.authorid57218887609en_US
dc.contributor.authorid15132461300en_US
dc.contributor.authorid12801271200en_US
dc.date.accessioned2024-10-14T03:17:31Z
dc.date.available2024-10-14T03:17:31Z
dc.date.issued2023
dc.description.abstractIn light of recent doubts surrounding the industrial viability of photo(electro)catalysis technology for sustainable hydrogen production, it becomes imperative to align materials development with rationalized synthesis protocols. In this study, we present an innovative technique utilizing atmospheric-pressure chemical vapor deposition (APCVD) to rapidly produce TiO2 in just 5 minutes using pure TiCl4 as the sole reagent. The resulting photoanode exhibits exceptional photoelectrochemical (PEC) water-splitting performance, achieving a photocurrent density of 2.06 mA cm?2 at 1.23 V RHE. Moreover, the photoanode demonstrates sustained operation for 16 hours, leading to the successful collection of 138 ?mol of H2 and 62 ?mol of O2. These remarkable results are attributed to the controlled formation of an anatase-rutile phase-junction, the presence of well-balanced oxygen vacancies, and the bifrustum nanoparticle-nanoflake structure with a unique light trapping effect and large surface area. Density functional theory calculations confirm that the water-splitting reaction primarily occurs at undercoordinated Ti and O atoms in both anatase and rutile TiO2. Notably, the calculated Gibbs free energy values for the hydrogen evolution reaction (HER) differ significantly between rutile (?0.86 eV) and anatase TiO2 (0.22 eV). In the heterojunction, charge transfer enhances the HER performance through shared electronic density, resulting in a synergistic effect that surpasses the capabilities of individual surfaces and underscores the importance of electronic interactions within the junction. � 2023 The Royal Society of Chemistry.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1039/d3cy00918a
dc.identifier.epage6950
dc.identifier.issue24
dc.identifier.scopus2-s2.0-85175647745
dc.identifier.spage6937
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175647745&doi=10.1039%2fd3cy00918a&partnerID=40&md5=58be5efdf7452204cd36233b529a0aa6
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33959
dc.identifier.volume13
dc.pagecount13
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofHybrid Gold Open Access
dc.sourceScopus
dc.sourcetitleCatalysis Science and Technology
dc.subjectAtmospheric pressure
dc.subjectCharge transfer
dc.subjectChemical vapor deposition
dc.subjectChlorine compounds
dc.subjectDensity functional theory
dc.subjectFree energy
dc.subjectGibbs free energy
dc.subjectHeterojunctions
dc.subjectHydrogen production
dc.subjectOxide minerals
dc.subjectPhotoelectrochemical cells
dc.subjectAnatase TiO 2
dc.subjectAtmospheric pressure chemical vapor deposition
dc.subjectHydrogen evolution reactions
dc.subjectInnovative techniques
dc.subjectMaterial development
dc.subjectPhoto-anodes
dc.subjectPhotoelectrocatalysis
dc.subjectPhotoelectrochemical water splitting
dc.subjectReaction performance
dc.subjectRutile TiO 2
dc.subjectTitanium dioxide
dc.titleEnhanced hydrogen evolution reaction performance of anatase-rutile TiO2 heterojunction via charge transfer from rutile to anataseen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections