Publication:
Optimization of zinc-doped emitter layer thickness and doping concentration for gallium antimonide based thermophotovoltaic cells

dc.citedby3
dc.contributor.authorRashid W.E.en_US
dc.contributor.authorGamel M.M.A.en_US
dc.contributor.authorKer P.J.en_US
dc.contributor.authorYao L.K.en_US
dc.contributor.authorRahman N.A.en_US
dc.contributor.authorJing L.H.en_US
dc.contributor.authorJamaludin M.Z.en_US
dc.contributor.authorid57204586520en_US
dc.contributor.authorid57215306835en_US
dc.contributor.authorid37461740800en_US
dc.contributor.authorid56903550000en_US
dc.contributor.authorid57207729143en_US
dc.contributor.authorid57190622221en_US
dc.contributor.authorid57216839721en_US
dc.date.accessioned2023-05-29T07:27:47Z
dc.date.available2023-05-29T07:27:47Z
dc.date.issued2019
dc.description.abstractGallium antimonide based thermophotovoltaic cell is a well-known photovoltaic diode that can directly convert thermal radiation into electricity. Recent investigations on the improvement of gallium antimonide thermophotovoltaic cell performance have led to a number of optimization studies, particularly on the cell design structures. However, low conversion efficiency of gallium antimonide thermophotovoltaic cell remains a major challenge in this area. An optimization study was previously demonstrated with increased efficiency up to 6.63 % incorporating an optimum emitter thickness of 0.85 ?m. This work extended the optimization possibilities, aiming to achieve higher power conversion efficiency of gallium antimonide thermophotovoltaic cell. Different doping concentrations of the emitter layer ranging from 1x1018 to 5x1020 cm-3 were studied using Silvaco TCAD simulation software. Within the investigated doping concentrations, the optimum power efficiency of 7.51 % was achieved at 1x1020 cm-3 under AM1.5 illumination condition. Additionally, higher cell performance was achieved with a power efficiency of 7.88 % by employing an emitter layer thickness of 0.15 ?m and a doping concentration of 1.7x1020 cm-3. The success of this work will contribute to a perceptive reference for the future development in practical device fabrication of high-performance gallium antimonide thermophotovoltaic cell. � 2019, Akademi Sains Malaysia.en_US
dc.description.natureFinalen_US
dc.identifier.epage9
dc.identifier.issueSpecialIssue4
dc.identifier.scopus2-s2.0-85084520106
dc.identifier.spage1
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084520106&partnerID=40&md5=c218eaf43dda6e56af1ae2b6ff707981
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/24840
dc.identifier.volume12
dc.publisherAkademi Sains Malaysiaen_US
dc.sourceScopus
dc.sourcetitleASM Science Journal
dc.titleOptimization of zinc-doped emitter layer thickness and doping concentration for gallium antimonide based thermophotovoltaic cellsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections