Publication:
S-Scheme ZIF-67/CuFe-LDH Heterojunction for High-Performance Photocatalytic H2 Evolution and CO2 to MeOH Production

dc.citedby11
dc.contributor.authorVennapoosa C.S.en_US
dc.contributor.authorVarangane S.en_US
dc.contributor.authorGonuguntla S.en_US
dc.contributor.authorAbraham B.M.en_US
dc.contributor.authorAhmadipour M.en_US
dc.contributor.authorPal U.en_US
dc.contributor.authorid57566914300en_US
dc.contributor.authorid57801238000en_US
dc.contributor.authorid57208838774en_US
dc.contributor.authorid57191525848en_US
dc.contributor.authorid55533484700en_US
dc.contributor.authorid8908351700en_US
dc.date.accessioned2024-10-14T03:17:34Z
dc.date.available2024-10-14T03:17:34Z
dc.date.issued2023
dc.description.abstractThe S-scheme heterojunction photocatalyst holds potential for better photocatalysis owing to its capacity to broaden the light absorption range, ease electron-hole separation, extend the charge carrier lifespan, and maximize the redox ability. In this study, we integrate zeolitic imidazolate frameworks (ZIFs-67) with the CuFe-LDH composite, offering a straightforward approach towards creating a novel hybrid nanostructure, enabling remarkable performance in both photocatalytic hydrogen (H2) evolution and carbon dioxide (CO2) to methanol (MeOH) conversion. The ZIF-67/CuFe-LDH photocatalyst exhibits an enhanced photocatalytic hydrogen evolution rate of 7.4 mmol g-1 h-1 and an AQY of 4.8%. The superior activity of CO2 reduction to MeOH generation was 227 ?mol g-1 h-1 and an AQY of 5.1%, and it still exhibited superior activity after continuously working for 4 runs with nearly negligible decay in activity. The combined spectroscopic analysis, electrochemical study, and computational data strongly demonstrate that this hybrid material integrates the advantageous properties of the individual ZIF-67 and CuFe-LDH exhibiting distinguished photon harvesting, suppression of the photoinduced electron-hole recombination kinetics, extended lifetime, and efficient charge transfer, subsequently boosting higher photocatalytic activities. � 2023 American Chemical Society.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1021/acs.inorgchem.3c02126
dc.identifier.epage16463
dc.identifier.issue40
dc.identifier.scopus2-s2.0-85173578088
dc.identifier.spage16451
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85173578088&doi=10.1021%2facs.inorgchem.3c02126&partnerID=40&md5=08fe065e1d96a6a922f79b6e5cf9b54f
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33980
dc.identifier.volume62
dc.pagecount12
dc.publisherAmerican Chemical Societyen_US
dc.sourceScopus
dc.sourcetitleInorganic Chemistry
dc.subjectCharge transfer
dc.subjectCopper compounds
dc.subjectHeterojunctions
dc.subjectHybrid materials
dc.subjectHydrogen
dc.subjectIron compounds
dc.subjectLight absorption
dc.subjectPhotocatalytic activity
dc.subjectSpectroscopic analysis
dc.subjectElectron-hole separation
dc.subjectH 2 evolution
dc.subjectHybrid nanostructures
dc.subjectHydrogen evolution rate
dc.subjectLifespans
dc.subjectPerformance
dc.subjectPhoto-catalytic
dc.subjectPhotocatalytic hydrogen
dc.subjectPhotocatalytic hydrogen evolution
dc.subjectZeolitic imidazolate frameworks
dc.subjectCarbon dioxide
dc.titleS-Scheme ZIF-67/CuFe-LDH Heterojunction for High-Performance Photocatalytic H2 Evolution and CO2 to MeOH Productionen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections