Publication: Improvement of ANN-BP by data pre-segregation using SOM
| dc.citedby | 7 | |
| dc.contributor.author | Weng L.Y. | en_US |
| dc.contributor.author | Omar J.B. | en_US |
| dc.contributor.author | Siah Y.K. | en_US |
| dc.contributor.author | Abidin I.B.Z. | en_US |
| dc.contributor.author | Ahmed S.K. | en_US |
| dc.contributor.authorid | 26326032700 | en_US |
| dc.contributor.authorid | 24463418200 | en_US |
| dc.contributor.authorid | 24448864400 | en_US |
| dc.contributor.authorid | 35606640500 | en_US |
| dc.contributor.authorid | 25926812900 | en_US |
| dc.date.accessioned | 2023-12-28T07:30:46Z | |
| dc.date.available | 2023-12-28T07:30:46Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | Artificial intelligence is used to predict the onset of diabetes based on data measured from Pima Indians. This research is comparing the results gained from using same artificial neural networks-back propagation (ANN-BP) engine for 2 differently prepared data. The first data set consists of the entire data set which is cross validated, while the second dataset is segregated into 2 groups using Kohonen Self Organizing Maps (SOM) which are then cross validated. Splitting the files prior to implementing the cross validation improves the general accuracy of the ANN-BP whereby the positively predicted diabetes cases percentage increased from 72% to 99%. Meanwhile the prediction of the negative diabetic cases percentage increased from 80% to 97%. � 2009 IEEE. | en_US |
| dc.description.nature | Final | en_US |
| dc.identifier.ArtNo | 5069941 | |
| dc.identifier.doi | 10.1109/CIMSA.2009.5069941 | |
| dc.identifier.epage | 178 | |
| dc.identifier.scopus | 2-s2.0-77950851517 | |
| dc.identifier.spage | 175 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950851517&doi=10.1109%2fCIMSA.2009.5069941&partnerID=40&md5=b72ae9d5978d4c50b73b905334598f96 | |
| dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/29684 | |
| dc.pagecount | 3 | |
| dc.source | Scopus | |
| dc.sourcetitle | 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA 2009 | |
| dc.subject | Artificial intelligenc | |
| dc.subject | Diabetes | |
| dc.subject | Kohonen Self Organizing Maps | |
| dc.subject | Neural networks | |
| dc.subject | Pima Indians | |
| dc.subject | Artificial intelligence | |
| dc.subject | Backpropagation | |
| dc.subject | Data flow analysis | |
| dc.subject | Measurements | |
| dc.subject | Strength of materials | |
| dc.subject | 2-group | |
| dc.subject | Artificial intelligenc | |
| dc.subject | Artificial Neural Network | |
| dc.subject | Cross validation | |
| dc.subject | Data sets | |
| dc.subject | Kohonen self-organizing maps | |
| dc.subject | Self organizing maps | |
| dc.title | Improvement of ANN-BP by data pre-segregation using SOM | en_US |
| dc.type | Conference paper | en_US |
| dspace.entity.type | Publication |