Publication:
Stability, thermophysical properties, forced convective heat transfer, entropy minimization and exergy performance of a novel hybrid nanofluid: Experimental study

dc.citedby8
dc.contributor.authorKanti P.K.en_US
dc.contributor.authorVicki Wanatasanappan V.en_US
dc.contributor.authorMahjoub Said N.en_US
dc.contributor.authorSharma K.V.en_US
dc.contributor.authorid57216493630en_US
dc.contributor.authorid58093867000en_US
dc.contributor.authorid57217198447en_US
dc.contributor.authorid8417385700en_US
dc.date.accessioned2025-03-03T07:41:50Z
dc.date.available2025-03-03T07:41:50Z
dc.date.issued2024
dc.description.abstractThis research explores how incorporating graphene oxide (GO) into red mud (RM) creates a superior nanomaterial for heat transfer applications. RM's inherent stability and thermal conductivity (TC), stemming from its metal oxide composition, are further amplified by this hybrid nano-composite. The study primarily investigates the thermal performance of water-based RM mono nanofluid and hybrid RM + GO (50:50) nanofluids (HNFs) at nanoparticle concentrations of 0.1?0.75 vol%. An experimental setup consisting of a copper tube under turbulent flow conditions with a constant heat flux and a bulk fluid temperature of 60 �C was used to test the performance of HNF. Various techniques are used to characterize the nanoparticles (NPs), and evaluate the thermophysical properties of nanofluids. The experimental data reveal that the heat transfer coefficient (HTC) increases with higher inlet fluid velocity and nanoparticle concentrations. Notably, the HNF demonstrates a significant improvement of 47.2 % in Nusselt number (Nu) and a 13.6 % rise in pressure drop (?p) compared to base fluid, at 0.75 vol%. The least entropy generation number (EGN) is obtained for the HNF (0.0049) compared to the RM NF (0.00583) at a concentration of 0.75 vol%. The exergy efficiency improves with an increase in concentration and Reynolds number (Re). Additionally, the study identifies the performance index (PI) of NFs and modelled correlations for estimating the Nu and friction factor (f) within the investigated concentration range. ? 2024 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo125571
dc.identifier.doi10.1016/j.molliq.2024.125571
dc.identifier.scopus2-s2.0-85199912189
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85199912189&doi=10.1016%2fj.molliq.2024.125571&partnerID=40&md5=7fd4c46fc8b15df6c2e7e776b3c45c7a
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36296
dc.identifier.volume410
dc.publisherElsevier B.V.en_US
dc.sourceScopus
dc.sourcetitleJournal of Molecular Liquids
dc.subjectEntropy
dc.subjectGraphene
dc.subjectHeat convection
dc.subjectHeat flux
dc.subjectNanocomposites
dc.subjectNanofluidics
dc.subjectNanoparticles
dc.subjectReynolds number
dc.subjectThermal conductivity
dc.subjectEntropy generation
dc.subjectExergy Analysis
dc.subjectGraphene oxides
dc.subjectIrreversibility
dc.subjectNanofluids
dc.subjectNanoparticle concentrations
dc.subjectPerformance
dc.subjectPerformance indices
dc.subjectRed mud
dc.subjectRed mud nanofluid
dc.subjectExergy
dc.titleStability, thermophysical properties, forced convective heat transfer, entropy minimization and exergy performance of a novel hybrid nanofluid: Experimental studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections