Publication:
Impedance analysis of charge transfer upon nickel doping in Tio2-based flexible dye-sensitized solar cell

dc.citedby6
dc.contributor.authorAbdullah H.en_US
dc.contributor.authorMahalingam S.en_US
dc.contributor.authorXian K.J.en_US
dc.contributor.authorManap A.en_US
dc.contributor.authorOthman M.H.D.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorid26025061200en_US
dc.contributor.authorid55434075500en_US
dc.contributor.authorid57218957174en_US
dc.contributor.authorid57200642155en_US
dc.contributor.authorid57217148784en_US
dc.contributor.authorid57195441001en_US
dc.date.accessioned2023-05-29T09:05:56Z
dc.date.available2023-05-29T09:05:56Z
dc.date.issued2021
dc.descriptionCharge transfer; Costs; Nickel; Oxide minerals; Plastics industry; Temperature; Titanium dioxide; Electron lifetime; Electron recombinations; Flexible dye sensitized solar cell; Impedance analysis; Low-temperature fabrication; Mechanically robust; Plastic substrates; Temperature limitation; Dye-sensitized solar cellsen_US
dc.description.abstractFlexible dye-sensitized solar cells (FDSSCs) have promoted interest in plastic industries as they are lightweight, flexible, and mechanically robust to accelerate production and reduce cost. However, the plastic substrates have temperature limitations in producing the TiO2 photoanode and degrade the performance of FDSSC. The main reason for this degradation is the low charge transfer in the photoanode layer. Although there is plenty of research on low-temperature fabrication methods, they indirectly increase the operational cost. Therefore, a new approach is necessary for charge transfer improvement without affecting the temperature in a low-cost platform. In this study, we present a photoanode that improves the charge transfer by doping nickel (Ni) in the TiO2 layer. A low amount of Ni doping (15%) exhibited Rct >> Rt, indicating a high charge transport and low electron recombination rate (120.84�s?1). On the other hand, higher amount Ni doping (>> 45%) has Rct << Rt which deteriorates the performance of the cell by causing severe agglomeration issues, indicating a high electron recombination rate (369.75�s?1). Moreover, the high charge transfer in (TiO2)85-Ni15-based FDSSC facilitates the electron lifetime of the cell up to 8.28�ms. Therefore, an optimum doping of Ni in TiO2-based FDSSC is studied in this work. � 2020, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s00289-020-03396-w
dc.identifier.epage5768
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85092388839
dc.identifier.spage5755
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092388839&doi=10.1007%2fs00289-020-03396-w&partnerID=40&md5=3a87f01e15851e9c63db380c67687b83
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/25990
dc.identifier.volume78
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceScopus
dc.sourcetitlePolymer Bulletin
dc.titleImpedance analysis of charge transfer upon nickel doping in Tio2-based flexible dye-sensitized solar cellen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections