Publication:
Response optimisation of TiO2-supported bimetallic NiCo catalyst for the cracking and deoxygenation of waste cooking oil into jet-fuel range hydrocarbon fuels under non-hydrogen environment

dc.citedby0
dc.contributor.authorGoh B.H.H.en_US
dc.contributor.authorChong C.T.en_US
dc.contributor.authorMilano J.en_US
dc.contributor.authorTiong S.K.en_US
dc.contributor.authorCui Y.en_US
dc.contributor.authorNg J.-H.en_US
dc.contributor.authorid57206847702en_US
dc.contributor.authorid56962789000en_US
dc.contributor.authorid57052617200en_US
dc.contributor.authorid15128307800en_US
dc.contributor.authorid59443852900en_US
dc.contributor.authorid57158527100en_US
dc.date.accessioned2025-03-03T07:41:32Z
dc.date.available2025-03-03T07:41:32Z
dc.date.issued2024
dc.description.abstractWaste cooking oil is a sustainable feedstock that can be utilised to produce biojet fuel via the hydrodeoxygenation process. However, the need for hydrogen for the hydrodeoxygenation process incurs high cost. In the present work, a type of bimetallic catalyst that can deoxygenate and selectively crack free fatty acids under hydrogen-free conditions was developed. The NiCo/TiO2 catalyst was prepared via the impregnation of varying amounts of Ni and Co salts onto TiO2. Optimisation of the production conditions was performed via response surface methodology based on the Box-Behnken experimental design to maximise the deoxygenation and biojet fuel yield. A maximum deoxygenation yield of 83.13 % with 44.5 % biojet fuel selectivity was obtained from the experiment and optimisation based on Box-Behnken design (R2 > 0.9). Incorporation of Ni and Co onto TiO2 reduced the surface area of the catalyst, but active metal dispersion significantly improved the deoxygenation performance and biojet fuel selectivity. The viscosity, flash point, freezing point and net heat of combustion value of the liquid product were within the jet fuel standard specifications. Overall, the study shows the potential of bimetallic NiCo/TiO2 catalyst in waste cooking oil deoxygenation for biojet fuel production. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo133057
dc.identifier.doi10.1016/j.energy.2024.133057
dc.identifier.scopus2-s2.0-85203170449
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85203170449&doi=10.1016%2fj.energy.2024.133057&partnerID=40&md5=468dcc215d5864f9037056d8961ae064
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36192
dc.identifier.volume309
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleEnergy
dc.subjectCatalyst selectivity
dc.subjectCooking
dc.subjectHydrogen fuels
dc.subjectJet fuel
dc.subjectBimetallic catalysts
dc.subjectBimetallics
dc.subjectBox-Behnken design
dc.subjectDeoxygenations
dc.subjectJet fuel range hydrocarbon
dc.subjectOptimisations
dc.subjectResponse optimization
dc.subjectTiO 2
dc.subjectWaste cooking oil
dc.subject]+ catalyst
dc.subjectcatalyst
dc.subjectcracking (chemistry)
dc.subjectexperimental design
dc.subjectfuel consumption
dc.subjecthydrocarbon
dc.subjectinorganic compound
dc.subjectoptimization
dc.subjectsurface area
dc.subjectWaste incineration
dc.titleResponse optimisation of TiO2-supported bimetallic NiCo catalyst for the cracking and deoxygenation of waste cooking oil into jet-fuel range hydrocarbon fuels under non-hydrogen environmenten_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections