Publication: Machine Learning Algorithms for Diabetes Prediction: A Review Paper
No Thumbnail Available
Date
2019
Authors
Al-Sideiri A.
Cob Z.B.C.
Drus S.B.M.
Journal Title
Journal ISSN
Volume Title
Publisher
Association for Computing Machinery
Abstract
The early diagnosis of the diabetes disease is a very important for cure process, and that provides an ease process of treatment for both the patient and the doctor. At this point, statistical methods and data mining algorithms can provide significance chances for early diagnosis of diabetes mellitus (DM). In the literature, many studies have been published for solution of this problem. Initially, these studies are analyzed in detail and classified according to their methodologies. The main aim of this paper is to provide the comprehensive and detailed review of the diagnosis of diabetes by machine learning algorithms. Also, this paper presents a literature review on the diagnosis diabetes up to the mid of 2019. This paper provides to guide future research and knowledge accumulation and creation of classification and prediction techniques in diagnosis of diabetes. This study shows that the Support Vector Machine (SVM) algorithm is the most used machine learning algorithms and it provide more accurate and powerful results. � 2019 ACM.
Description
Computer aided diagnosis; Data mining; Learning systems; Patient treatment; Predictive analytics; Robotics; Support vector machines; Data mining algorithm; Diabetes mellitus; Early diagnosis; Knowledge accumulation; Literature reviews; Prediction techniques; Review papers; Support vector machine algorithm; Learning algorithms