Publication:
The application of nanofluids on three dimensional mixed convection heat transfer in equilateral triangular duct

dc.citedby3
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorOm N.I.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorHussein A.K.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid42162023000en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid36238891000en_US
dc.contributor.authorid6602374364en_US
dc.date.accessioned2023-12-29T07:48:42Z
dc.date.available2023-12-29T07:48:42Z
dc.date.issued2011
dc.description.abstractIn this work numerical predictions of mixed convective nanofluids flow and heat transfer in an equilateral triangular duct are reported. Three dimensional, laminar Navier-Stokes and energy equations were solved using the finite volume method. Pure water and four different types of nanofluids such as Ag, Au, Cu, diamond and SiO2 with volume fractions range of 1% ?; ? ?; 5% are used. This investigation covers Rayleigh number in the range of 1� 104 ? Ra ? 1� 106 and Reynolds number in the range of 100 ? Re ? 1000. The effects of different Rayleigh numbers, Reynolds numbers, nanofluid types, volume fractions of nanofluid, apex angles of the traingular duct, and radiation are investigated. The results presented in terms of streamlines, isotherms, Nusselt number, and pressure drop. The results revealed that the Nusselt number increases as Rayleigh number increases due to the buoyancy force effect. It is found that SiO2 nanofluid has the highest Nusselt number while Au nanofluid has the lowest Nusselt number among other nanofluids. The apex angle of the triangular duct has remarkable influence on the Nusselt number. An increasing of the duct apex angle decreases the Nusselt number value. The pressure drop increases as Reynolds number increases and apex angle decreases.en_US
dc.description.natureFinalen_US
dc.identifier.epage12
dc.identifier.issue2
dc.identifier.scopus2-s2.0-84856400457
dc.identifier.spage3
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84856400457&partnerID=40&md5=9a57d358992c6e8da22b7439a6aae596
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30512
dc.identifier.volume29
dc.pagecount9
dc.publisherInternational Information and Engineering Technology Associationen_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Heat and Technology
dc.subjectHeat transfer enhancement
dc.subjectMixed convection
dc.subjectNanofluids
dc.subjectNumerical modeling
dc.subjectTriangular duct
dc.subjectDucts
dc.subjectFinite volume method
dc.subjectMixed convection
dc.subjectNavier Stokes equations
dc.subjectNusselt number
dc.subjectPressure drop
dc.subjectRadiation effects
dc.subjectReynolds number
dc.subjectSilicon compounds
dc.subjectThree dimensional
dc.subjectApex angles
dc.subjectBuoyancy forces
dc.subjectEnergy equation
dc.subjectFlow and heat transfer
dc.subjectHeat Transfer enhancement
dc.subjectMixed convective
dc.subjectNano-fluid
dc.subjectNanofluids
dc.subjectNavier Stokes
dc.subjectNumerical modeling
dc.subjectNumerical predictions
dc.subjectPure water
dc.subjectRayleigh number
dc.subjectNanofluidics
dc.titleThe application of nanofluids on three dimensional mixed convection heat transfer in equilateral triangular ducten_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections