Publication:
Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells

No Thumbnail Available
Date
2021
Authors
Pan X.
Wu J.
Xiao L.
Yap B.
Xia R.
Peng X.
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley and Sons Inc
Research Projects
Organizational Units
Journal Issue
Abstract
Three small-molecule acceptors (Por-PDI, TEHPor-PDI, and BBOPor-PDI) with different side chains were synthesized by using a porphyrin core as the electron-donating unit and connecting electron-withdrawing perylene diimide dimers via acetylene bridges. The bulk heterojunction organic solar cells based on the three acceptors and a polymer donor provided power conversion efficiencies (PCEs) of 3.68�5.21 % when the active layers were fabricated with pyridine additives. Though the synthesis of Por-PDI is easier with fewer reaction steps and higher yields, the devices based on Por-PDI showed the best performance with a PCE of 5.21 %. The more ordered intermolecular packing due to the reduced steric hindrance at the porphyrin core of Por-PDI could contribute to the more balanced hole/electron mobilities, higher maximum charge generation rate, and less bimolecular recombination in Por-PDI devices, which are beneficial for the higher PCE. � 2021 Wiley-VCH GmbH
Description
Additives; Dimers; Heterojunctions; Polycyclic aromatic hydrocarbons; Porphyrins; Synthesis (chemical); Bimolecular recombination; Bulk heterojunction organic solar cells; Charge generation; Electron-donating; Electronwithdrawing; Intermolecular packing; Power conversion efficiencies; Steric hindrances; Organic solar cells
Keywords
Citation
Collections