Publication:
Bioprocesses Coupling for Biohydrogen Production: Applications and Challenges

dc.citedby1
dc.contributor.authorMagdalena J.A.en_US
dc.contributor.authorP�rez-Bernal M.F.en_US
dc.contributor.authordel Rosario Rodero M.en_US
dc.contributor.authorRoslan E.en_US
dc.contributor.authorLanfranchi A.en_US
dc.contributor.authorDabestani-Rahmatabad A.en_US
dc.contributor.authorMahieux M.en_US
dc.contributor.authorCapson-Tojo G.en_US
dc.contributor.authorTrably E.en_US
dc.contributor.authorid57201977815en_US
dc.contributor.authorid57199231616en_US
dc.contributor.authorid58037248600en_US
dc.contributor.authorid59247663400en_US
dc.contributor.authorid57714999100en_US
dc.contributor.authorid59170626800en_US
dc.contributor.authorid59013776900en_US
dc.contributor.authorid57190977155en_US
dc.contributor.authorid6506445171en_US
dc.date.accessioned2025-03-03T07:46:33Z
dc.date.available2025-03-03T07:46:33Z
dc.date.issued2024
dc.description.abstractThe decarbonisation of industry based on the sustainable use of resources is one of the main objectives of our current society. To achieve this, rich-carbohydrate residual streams constitute a cost-effective feedstock from which hydrogen can be produced via dark fermentation (DF). In recent years, bench-scale testing has delivered encouraging results. Nonetheless, the low hydrogen productivity obtained still prevents the upscaling of this technology. A possible solution to overcome this technical barrier might be to couple DF with other available bioprocesses. The resulting coupling would enhance substrate exploitation and increase hydrogen productivity. The biohydrogen produced could be used either as an energetic vector or as a platform molecule for added-value compound production. This chapter aims to comprehensively review the existing bioprocesses under investigation coupled with DF as a pivotal technology for biohydrogen production. More specifically, technologies such as microbial electrolysis cells, microalgae cultivation, biomethanation, photofermentation, and lactate production are evaluated. Aspects such as the optimal operational conditions that favour the coupling in each case and the hydrogen yields obtained, are reported. Furthermore, the advantages and disadvantages of the process couplings are also discussed. Finally, current challenges and future perspectives that each hydrogen production platform entails are pointed out to set the way forward in the coming years. ? The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/978-3-031-57735-2_14
dc.identifier.epage304
dc.identifier.scopus2-s2.0-85197575897
dc.identifier.spage273
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85197575897&doi=10.1007%2f978-3-031-57735-2_14&partnerID=40&md5=67313da3f47a69b3790762eae7c92fec
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/37006
dc.identifier.volumePart F3093
dc.pagecount31
dc.publisherSpringer Natureen_US
dc.sourceScopus
dc.sourcetitleSpringer Water
dc.titleBioprocesses Coupling for Biohydrogen Production: Applications and Challengesen_US
dc.typeBook chapteren_US
dspace.entity.typePublication
Files
Collections