Publication:
One-way fluid structure interaction analysis of a static savonius hydrokinetic turbine under different velocity and surface roughness with different blade materials

dc.citedby3
dc.contributor.authorMat Yazik M.H.en_US
dc.contributor.authorZawawi M.H.en_US
dc.contributor.authorAhmed A.N.en_US
dc.contributor.authorSidek L.M.en_US
dc.contributor.authorBasri H.en_US
dc.contributor.authorIsmail F.en_US
dc.contributor.authorid57209219673en_US
dc.contributor.authorid39162217600en_US
dc.contributor.authorid57214837520en_US
dc.contributor.authorid35070506500en_US
dc.contributor.authorid57065823300en_US
dc.contributor.authorid22950639500en_US
dc.date.accessioned2025-03-03T07:48:29Z
dc.date.available2025-03-03T07:48:29Z
dc.date.issued2024
dc.description.abstractHydrokinetic turbines are prone to a harsh hydrodynamic environment with intricate vortical flows that elevate the probability of failure. The degradation of the blade surface caused by corrosion can impact the blade's hydrodynamic and the structural performance. This paper reports a one-way three-dimensional fluid-structure interaction simulation to analyse the performance of a static Savonius hydrokinetic turbine at varying rotor positions, with different surface roughness and water velocities, in terms of coefficients of static torque, static torque, stresses, and blade deformation. The simulations revealed that the optimum position for the highest coefficient of static torque was at 15� (Cst = 0.30) in reference to the water flow. Increasing the water velocity from 0.4 ms?1 to 0.84 ms?1 improved the turbine static torque due to an increase in the kinetic energy. However, the presence of surface roughness has deterioration effects on the static torque coefficient due to a delayed separation which causes a drag reduction. The simulation predicted no structural failure at 0.4 ms?1 and 0.84 ms?1, but varying materials exhibited varying maximum principal stress and deformation, highlighting the significance of the early development of materials selection process. The maximum von Mises stress and deformation was obtained when the turbine is resting at 45� for aluminium blade (� = 1.05 MPa, � = 5.6e?4 mm). The results of this study indicate suitable materials from a hydrodynamic and material perspectives for the construction of the Savonius hydrokinetic turbine, which can be implemented in the design process to potentially save cost and minimize turbine downtime. ? 2023 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo116373
dc.identifier.doi10.1016/j.oceaneng.2023.116373
dc.identifier.scopus2-s2.0-85177838838
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85177838838&doi=10.1016%2fj.oceaneng.2023.116373&partnerID=40&md5=4ff1630a01f21cf91bcbb8a242898fb9
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/37193
dc.identifier.volume291
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleOcean Engineering
dc.subjectCorrosion
dc.subjectDeterioration
dc.subjectEnergy dissipation
dc.subjectFailure (mechanical)
dc.subjectFlow of water
dc.subjectFluid structure interaction
dc.subjectFracture mechanics
dc.subjectHydraulic motors
dc.subjectKinetic energy
dc.subjectKinetics
dc.subjectSurface roughness
dc.subjectTorque
dc.subjectTurbine components
dc.subjectTurbomachine blades
dc.subjectCoefficient of static torques
dc.subjectFluid structure interaction analysis
dc.subjectFluid-structure interaction
dc.subjectHydrokinetic turbines
dc.subjectRenewable energies
dc.subjectSavonius turbine
dc.subjectStatic torque
dc.subjectStress and deformation
dc.subjectVortical flows
dc.subjectWater velocities
dc.subjectalternative energy
dc.subjectfluid-structure interaction
dc.subjecthydrodynamics
dc.subjectkinetic energy
dc.subjectsurface roughness
dc.subjectturbine
dc.subjectHydrodynamics
dc.titleOne-way fluid structure interaction analysis of a static savonius hydrokinetic turbine under different velocity and surface roughness with different blade materialsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections