Publication:
Heat transfer enhancement for combined convection flow of nanofluids in a vertical rectangular duct considering radiation effects

dc.citedby2
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorOm N.I.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid42162023000en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid6602374364en_US
dc.date.accessioned2023-12-29T07:48:28Z
dc.date.available2023-12-29T07:48:28Z
dc.date.issued2011
dc.description.abstractIn this paper, combined convective heat transfer and nanofluids flow characteristics in a vertical rectangular duct are numerically investigated. This investigation covers Rayleigh numbers in the range of 2 � 106 ? Ra ? 2 � 107 and Reynolds numbers in the range of 200 ? Re ? 1000. Pure water and five different types of nanofluids such as Ag, Au, CuO, diamond, and SiO2 with a volume fraction range of 0.5% ? ? ? 3% are used. The three-dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method (FVM). The effects of Rayleigh number, Reynolds number, nanofluids type, nanoparticle volume fraction of nano- fluids, and effect of radiation on the thermal and flow fields are examined. It is found that the heat transfer is enhanced using nanofluids by 47% when compared with water. The Nusselt number increases as the Reynolds number and Rayleigh number increase and aspect ratio decreases. A SiO2 nanofluid has the highest Nusselt number and highest wall shear stress while the Au nanofluid has the lowest Nusselt number and lowest wall shear stress. The results also revealed that the wall shear stress increases as Reynolds number increases, aspect ratio decreases, and nanoparticle volume fraction increases. � 2011 Wiley Periodicals, Inc.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1002/htj.20354
dc.identifier.epage463
dc.identifier.issue5
dc.identifier.scopus2-s2.0-79959269326
dc.identifier.spage448
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79959269326&doi=10.1002%2fhtj.20354&partnerID=40&md5=2452b7e45cf05e39068edb46d107181e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30494
dc.identifier.volume40
dc.pagecount15
dc.sourceScopus
dc.sourcetitleHeat Transfer - Asian Research
dc.subjectCombined convection
dc.subjectNanofluids
dc.subjectNumerical simulation
dc.subjectVertical rectangular duct
dc.subjectAspect ratio
dc.subjectDucts
dc.subjectFinite volume method
dc.subjectForced convection
dc.subjectLaminar flow
dc.subjectNanoparticles
dc.subjectNusselt number
dc.subjectRadiation effects
dc.subjectReynolds number
dc.subjectShear stress
dc.subjectSilicon compounds
dc.subjectTitration
dc.subjectVolume fraction
dc.subjectCombined convection
dc.subjectConvective heat transfer
dc.subjectFlow characteristic
dc.subjectGoverning equations
dc.subjectHeat Transfer enhancement
dc.subjectNano-fluid
dc.subjectNanofluids
dc.subjectPure water
dc.subjectRayleigh number
dc.subjectRectangular ducts
dc.subjectWall shear stress
dc.subjectNanofluidics
dc.titleHeat transfer enhancement for combined convection flow of nanofluids in a vertical rectangular duct considering radiation effectsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections